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A new, recursive, space-
subdivision algorithm for
rasterizing algebraic curves
and surfaces gets its accuracy
from a newly devised,
computationally efficient, and

asymptotically correct test.

We can represent planar curves parametrically or implic-
itly. A parametric curve is the image set of a 2D vector
function of one variable {(x(¢), y(#)) : ¢ € IR}, while an implicit
curve is the set of zeros of a function of two variables Z(f) = {(x.
y) : flx, ¥) = 0}. Very efficient methods exist to render several
families of parametric curves, but implicit curves are difficult to
render.

A local parameterization always exists in a neighborhood of
a regular point of an implicit curve (that is, a point p = (4, v) such
that f{p) = 0). Therefore, several researchers use an approach
called tracing to approximately parameterize the implicit curve,
then render it using methods designed for parametric curves.!
The basic difficulty with this method is that implicit curves can
be multiply connecled, often having singular points (where f(p)
=0and Vf{p) = 0) where they intersect themselves or split into
several branches. To render the curve correctly, an algorithm
must identify the singular points and the connected compo-
nents.* Unfortunately, the algorithms are intrinsically compli-
cated, computationally expensive, and can only handle curves
with isolated singularities.

To find all the singular points, an algorithm must compute
all the solutions of a system of polynomial equations. Tracing al-
gorithms follow a bottom-up approach, while recursive subdi-
vision algorithms follow a top-down approach. Somewhere in
between is a family of algorithms that compute piecewise linear
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approximations.® These algorithms use a single tessellation of
the initial box into a regular mesh of cells, triangles, or squares
in the plane and cubes or tetrahedra in space, using a marching
cubes* type of algorithm to move from an occupied cell to a
neighboring one. Inside an occupied cell the curve is approxi-
mated by a straight line segment, or by a polyhedron in the spa-
tial case.

This kind of approach has two basic problems. The first is
how 1o choose the resolution of the mesh. The second is how to
find an occupied cell to start the marching process. In principle,
all the cells must be visited in order not to miss disconnected
components.’ Recursive space-subdivision algorithms are gen-
erally based on subdividing boxes—the subject of this article—
and on subdividing triangles or tetrahedra.® I believe that so far
no algorithm has dealt with arbitrary singular curves and sur-
faces correctly. The algorithm described in this article does.

By using a space-subdivision scheme—that is, looking at the
original square as a low-resolution pixel, discarding pixels not
cut by the curve, and subdividing those that might be cut—we
can reduce the problem of rendering an algebraic curve in a
raster device to determining whether the curve culs a given
square or not. In a previous work,’ I introduced a correct algo-
rithm for rasterizing algebraic curves based on this scheme. In-
stead of using a yes-or-no test to determine whether the curve
cuts the square (that is, evaluating a necessary and sufficient
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Figure 1. Examples of algebraic curves rasterized with the algorithm
described elsewhere,’” on a grid of 512 x 512 pixels. Note that isolated
zeros and singularities of low order are correctly rendered, but
neighborhoods of singularities are thicker. The curve on the lower
right corner is the union of three circumferences, but all the points in
one of them are singular.

Figure 2. The same algebraic curves as in Figure 1, rasterized with the
algorithm described in this article. Note the curves have constant
width, even in the neighborhoods of singular points.
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condition for zeros of the associated polynomial in the box, a dif-
ficult problem?), 1 introduced a much less computationally ex-
pensive test based on a simple polynomial inequality. This
no-or-maybe test can determine that a polynomial does not
have roots inside a circle, although an empty circle could pass
the test. You can test squares by testing the circumscribed cir-
cles. Squares that do not pass the test can be safely discarded,
but the curve might not cut the squares that pass the test. How-
ever, the test is asymptotically correct near regular points of al-
gebraic curves; the results are rendered curves of constant width
in the neighborhood of regular points. Figure 1 shows some ex-
amples of algebraic curves rendered with this algorithm,
Although practical and simple (it produces correct rasteri-
zations of regular curves and almost correct rasterizations of
curves with low-order isolated singularities), this rendering al-
gorithm does nol behave correctly near singular points. Here |
introduce an improved version of the intersection test that
solves the problem. First, switching from the 2-norm ll(x, y)ll, =
(x + )12 to the ee-norm |l(x, y)Il.. = max{lxl, Iy} and modifying
the corresponding inequality yiclds a new test that is a suffi-
cient condition for an algebraic curve not to cut a square in-
stead of a circle. This test takes fewer arithmetic operations to
evaluate, and the results are equivalent to those obtained with
the old test. Second, the previous algorithm is too conservative

near singularities. It does not discard many empty squares near -

asingularity, which results in thicker lines in the neighborhood
of a singular point. Desingularizing the polynomial—con-
structing a rational function (a ratio of two polynomials) that is
continuous everywhere, with exactly the same zeros as the orig-
inal polynomial, but with constant multiplicity—solves the prob-
lem. Essentially, this rational function behaves locally as a
second-degree polynomial, even in the neighborhood of a sin-
gular point. I extended the polynomial test to this rational func-
tion to determine whether a box should be discarded.

With this new test we now have a practical algorithm that
renders a curve of constant width, even in neighborhoods of
singularities. Figure 2 shows the curves of Figure 1 rendered
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with this new algorithm. Note that neighborhoods of singular
points, even when they are not isolated, are rendered correctly.

Many readers might be skeptical about the robustness and nu-
merical stability of the algorithm, particularly near singular
points. I had the same concerns originally, mainly after the work
of Farouki and Rajan,” but the experimental results clearly show
that this algorithm answers these concerns in practice. Due to
lack of space, I show only a few examples here, but I have ex-
perimented extensively with both versions of this algorithm,
and their performance is very good. In a previous paper,’ I
showed curves of degree 50 with many singular points correctly
rendered with the previous version of the algorithm. The im-
proved version described here produces even better pictures,

The issue of speed might also concern some readers. Again,
due tolack of space, I do not present timing information here,
but the running times are acceptable. For low-degree curves, the
running times for the pictures shown range from a fraction of a
second to a few seconds on a typical technical workstation (IBM
RS/6000 Model 530, in my case). I gave timing information for
the old algorithm elsewhere.” 1 recognize that this is an area
that needs further exploration, and I am currently studying ways
to speed up the process.

Finally, note that the approach followed here is essentially the
interval arithmetic method for rendering implicit curves.!” My
contribution is a particularly efficient way to construct inclu-
sion functions for polynomials.

—
h
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procedure IdealPaintCurve (f, B({u,v), n/2))
for x — u—n/2 + 1/2to u+ n/2 - 1/2 step 1 do
foryev—n/2+1/2to v+ n/2-1/2 step 1 do
if Intersect ( Z(f), B((x.y), 1/2))) = NO
PaintPixel { x,y)

Figure 3. Ideal algorithm for rendering the curve Z(/) ={(x, ¥) ¢
Jix, ¥) =0} on a square of side n centered at the point (u, v). B((u, v), §)
denotes the square box {(x, ¥) : max(lx — al, |y - vl) < 8).

Recursive subdivision algorithms
Figure 3 describes an ideal algorithm for rendering an alge-
. braic curve

Z(f)={(x,») : fix,y) =0}

in the square box of side 7 centered at the point p = (i, v). The
algorithm scans the square and paints only those pixels cut by the
curve. This algorithm is ideal, because every correct algorithm
should paint exactly the same pixels, but it is impractical. Tt re-
quires #’ test evaluations, one for each pixel in the square. How-
ever, since in general it will be rendering a curve on a planar
region, the number of pixels it is expected to paint is only O(#).
We need a more efficient algorithm.

There are two issues to examine. The firstis how to reduce the
computational complexity by recursive subdivision. The sec-
ond, discussed in the next section, is how to test whether the
curve Z(f) cuts a square.

We can reduce the number of test evaluations easily using the
recursive space-subdivision scheme described in Figure 4, where
n is assumed to be a power of 2. The rationale behind this al-
gorithm is very simple. It starts by considering the initial square
region as a single pixel. Then, every square region that previ-
ously satisfied the test for its resolution is divided into four
equal-sized square regions, which are then tested. The squares
that pass the distance test are kept in a stack. Each iteration
halves the sides of the squares; when the square regions be-
come single pixels, the iteration stops and the pixels are painted.

Tests for.zeros of an
algebraic curve

This section tackles the problem of tésting whether the alge-

braic curve Z(f) delined by a polynomial of two variables f{x, ¥)
intersects the box B((u, v), 8) ={{x, y) : max{lx — ul, ly — vl} < 8}.
Tests that give a yes o1 no answer, that is, tests for necessary and
sufficient conditions for the curve to intersect the box, exist.®
However, they are computationally very expensive, involving
elimination techniques, and probably not numerically well be-
haved. You could use approximate tests instead; the main prob-
lem with approximate tests, though, is proving the correciness
of the algorithm. An approximate test should satisfy three main
properties. First, it should never discard a box that intersects the
curve; olherwise, parts of the curve could be missing. Thatis, the
test should be a sufficient condition for a curve not to intersect
the box. Second, it should be asymptotically correct; that is, if
a box does not intersect the curve and is not rejected by the
test, after a number of subdivision steps all the resulting sub-
boxes should be rejected. Third, and very much related to the
previous property, it should render curves of approximately
constant width.

The last two properties are difficult to achieve, in particular
when close to singular points. There is also the issue of how
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procedure RecursivePaintCurve (f, B((u,v), n/2)

input-stack « 0
output-stack « 0
Push {{u, v), input-stack)
while n> 1 do

nen2

while input-stack = 0 do

(u, v) « Pop(input-stack)

(U, V3) — (ty, vy)
(v o | e n
[ ]

L ] *

"

(uy, vy) (ta, V)

fori=1to 4 step 1 do
if Intersect (Z{f), B((u, v), n/2)) + NO
Push ((u, v), output-stack)
input-stack « output-stack
output-stack « 0
while input-stack = (} do

(x, y¥) < Pop (input-stack)
PaintPixel (x, y)

Figure 4. Improved ideal rendering algorithm.

well the test performs in practice, because even if it is asymp-
totically correct, it could converge very slowly. .

Now T will briefly describe a slightly modified version of a
test that I recently introduced.” It satisfies the first property,
and the second and third ones in the neighborhoods of the reg-
ular points of the curve. The test fails to discard enough pixels
close to singular points, resulting in thicker regions. That is, the
width of the rendered curve increases in the neighborhood of

-singular points. Figure 1 has already shown us examples of al-

gebraic curves rendered with the recursive subdivision algo-
rithm of Figure 4, using this test. I then modify the test further
to correct its behavior near singular points. This is the main
contribution of this article.

Note that by first translating the origin to (i, v), that is, by ex-
panding the polynomial in Taylor series around (i, v), the prob-
lem reduces to the case (i, v) = (0, 0). An efficient algorithm for
transforming the polynomial

fley)= Xy

(ki it jsd (l)

where d is the degree of f, to the form

)= Plemuy—v)= B file-uf (r-u)

Ui fri+j<d 2)

is Horner’s algorithm." Going from Equation 1 to Equation 2 is
equivalent to evaluating the polynomial and all its partial deriva-
tives at (u, v). Horner's algorithm requires O(m?) operations,
where m is the number of coefficients of the polynomial. To
evaluate a polynomial in Bernstein form requires the same or-
der of operations,

So, from now on we will concentrate on finding a sufficient
condition for the polynomial in Equation 1 not to have zeros in
the box B((0, 0), 8) = {(x. ¥) : lI(x, v)II, < 8}; we can assume that
f(0,0)=f,, 20, because otherwise the curve clearly intersects the
box. The approach is as follows: Construct a polynomial of one
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variable £{(e) whose coefficients are functions of the coefficients
f;yof fsuch that F(0)=/0,0)| > 0, and

V>0 (x,y) e B((0,0),8): If(x. )| = F()

Clearly, if 8 is smaller than the first positive root of F (il any), the
polynomial f does not have zeros in B((0,0), 8).

In the past I constructed the bounding polynomial F(8) to
provide a sufficient condition for the polynomial in Equation 1
not to have zeros in a circle C((0,0), 8) ={(x, v} : (x> + ") < §}.7
The following construction provides a test for boxes that re-
quires fewer arithmetic operations to evaluate. First rewrite
Equation 1 as a sum of homogeneous terms. or forms

e §

' d
T = Z z ﬁ‘r'xi}"j = Z .fh(x- y) 3)

h=0 | iv j=h

and apply the triangular inequality to the last sum.

)2l X ) @

Now consider cach one of the forms £, ..., f*individually and ob-
serve that

I (x.)

s Z ‘-"‘JI}"‘J.V j‘

ivji=h

g{ Z‘ﬁ;"}{]‘mx"ﬁj‘}

Gl i+j=h

<Fe" ' 5)

). = max{lx |y
By HUMJ o Fon )"] T Z‘Jﬁ;‘

i+j=h

because it is trivial to verify

= {max{ y[}}h: &

If we define F(g) = F, - Zf_, F,e", from Equations 4 and 5, we
obtain

X'y

max
i+j=h

X

o

fx, y)I 2 F(e)

Since F(g) is positive at the origin (F(0) = F, = {0, 0)| > 0), is
monotonically decreasing for € > 0, the coelficients £, ..., F,are
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nonnegative, and F, is positive, F(g) has a unique positive root
&,. Since F(e) =0 for 0 <& <d,, we have a sufficient condition for
the polynomial fnot to have zeros inside abox: 1[0 <g < §,, then
Fdoes not have zeros inside the box B((0, 0), €). In fact, although
the number §, can be computed very quickly with a couple of
Newton iteration steps, we do not need to compute it. Since the
polynomial F(g) is positive at the origin and is strictly decreas-
ing for £ 20, to test whether the curve intersects the box B((0,0),
&), we just evaluate F(8). If the value is positive, the curve does
not cut the box.

In the old test,” the coefficients F, ..., F, were defined as
follows:

gl

=R

a

In this case, F(g) > 0 instcad implies that f does not have zeros in
the circle C((0, 0), £). The difference between the old and new
tests is related to the switching from the 2-norm lICx, vl = (2 + y*)'*
to the ee-norm lI(x, y)Il, = max{lxl, Iyl}. In fact, these are just two
particular instances of a more general construction. For every
real number 7 such that 0 <r<ee, we can construct an r-norm Lest
in a similar way by defining the coefficients F, ... F, as follows:

AT

HEhR }

In this case F(g) > 0 is a sufficient condition for the polynomial

1r

i

fnot to have zeros in the r-ball

B.((0,0), &) ={{x, ¥) : lI(x, ¥)II, = (lxIr + [y < g}

However, since we will not use these tests and it is more expen-
sive to evaluate them, I will not describe them in detail here. I
only mention this family of tests because the only positive root
&, of the bounding polynomial F(g) associated with the r-norm
is a lower bound estimate for the r-distance from the origin to the
curve. Since all the norms are equivalent to each other (in the
sense that, when one goes to zero, all of them go to zero at the
same rate), using any one of these tests as the basis for the ren-
dering algorithm should produce almost the same results.
Owing to lack of space [ will not give a formal proof for this, but
1 have confirmed it experimentally. Although the results are not
identical, there is no significant perceptual difference. So, to un-
derstand the local behavior of a rendering algorithm based on
these tests, it is sufficient to analyze any one of them.

When analyzing the case of the 2-norm test,” I proved that the
2-norm approximate distance 8,(p) (defined as above by first
translating the origin to the point p = (u. v), then evaluating the
coefficients of the bounding polynomial, and finally finding its
unique nonnegative root} has the following property, which ex-
plains the behavior of the algorithm near regular points:
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Lemma 1. 11 fis a polynomial of degree d = 1, p, is a regular
point of Z( f), wis a unit length normal vector to Z( f) at p,, and
p.=py+itw,forte IR, then

lim % (Pr)

b m 2 1

where dist(p, Z( {)) is the Euclidean distance from the point p =
(u, v) to the curve Z(f).

The behavior of the algorithm near singular points is more diffi-
cult to analyze. Near a singular point the approximale distance
8,(p) always underestimates the Euclidean distance, and in gen-
eral the width of the curve increases proportionally to the multi-
plicity of the singularity. I will be more specific in the next section,
but for example, if Z(f) is a regular curve, Vf(x, y) #0 for every
point (x, v) € Z(f). When we set g(x, y) =f(x, v)?, the algorithm
based on the test described above will still render the curve Z(g)
correctly—that is, without erroneously discarding occupied
boxes—but at almost twice the width. Most rendering algorithms,
in particular tracing algorithms, cannot deal with this kind of sit-
uation. Figure 5 shows some examples of these curves.
When a polynomial has a multiple factor, as in the case of

fEy)=((x+ 12+ (p+17-1)
(k124 (y-1)y-1)
((r=12+y=1y-1y

shown in the lower right corner of Figure 1, this algorithm ren-
ders the multiple components at larger width.

Desingularization
My goal in this section is to modify the test described above
so as to correct its behavior near singular points.

Multiple points
The multiplicity of a point p = (u, v) as a zero of the polyno-

mial f is the minimum index h, such that at least one partial
derivative of f of order % is not identically zero at p:

m(p; f)=minl#: fi= 0}

where the form f} is the form f* of Equation 3, alter translating

Figure 5. Examples of algebraic curve pairs (Z(f), Z(f)). Z(f) is
rendered at almost twice the width of Z(f).

Figure 6. Behavior of 8, near regular and singular points. The thick
curve is the graph of f, and the thin curve is the graph of the bounding
polynomial F at the origin. The closest zero to the origin is p, marked

with a vertical segment on the left-hand side of the pictures.

L]

m(p;f) =1 m(p;f)=2 m(iﬁ;f):_ﬁt

the origin to p, as in Equation 2. We can define the multiplicity
of a point as a zero of an analytic function in a similar way. In this
casc, we must expand the function in Taylor series around p to
obtain the forms f}. Thus, the multiplicity of a point with re-
spect to a rational function is the multiplicity of the point with
respect to the numerator minus the multiplicity of the same point
with respect to the denominator. Points with positive multiplic-
ity are called zeres, and points with negative multiplicily are
called poles.

Since f) = f{p) is a constant, the set Z(f) is exactly the set of
points with positive multiplicity

Z(f)={pe R :m(p:f)>0}

A point p of multiplicity one is called a simple, or regular, point
of Z( ). It m(p; f) > 1, piscalled a multiple, or singular, point of
Z(f). The set of singular points of the curve Z( f) is exactly the
set of points with multiplicity at least two:

Z(H)=lpe R :m(p:f) > 1} c Z(f)

Reducing multiplicities

Figure 6 illustrates the main reason why the approximate dis-
tance 8, underestimates the Euclidean distance near a singular
point. The graphs of the polynomial f(x, y) and of its bounding
polynomial F(e) at the origin are represented along a line that
cuts a zero point p (marked with a vertical line segment on the
left side of the figures). When approaching a regular point, the
value of If(x, ¥) goes to zero linearly; as the multiplicity in-
creases, |fl goes to zero much faster. Note that the graph of If]
is concave near a zero of f, while the graph of F(g), which is al-
ways below the graph of |1, is convex. For a good approxima-
tion of the former by the latter, we need both graphs to be
almost linear. If the concavity of the graph of Ifl is too pro-
nounced, it is just not possible to obtain an accurate approxi-
mation with a convex function.

My approach is to linearize the behavior of fnear Z( ), or to
desingudarize it. By this 1 mean to construct a new rational func-
tion g(x, y), not a polynomial, with exactly the same set of ze-
ros Z(g) = Z( f), but such that all the points in Z(g) have exactly
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the same multiplicity with respect to g. First set ¢(x, y) = f{x, )2
The degree of ¢ is 24, and the multiplicity of a point as a zero
of ¢ is twice the multiplicity of the same point as a zero of f.
Now I show how to construct a polynomial y(x, y) with the fol-
lowing properties:

1. The degree of yis 2d — 2.

2. The set of zeros of v is a subset of the set of zeros of ¢. In
fact, Z(y) will be the set Z’(f) of singular points of f.

3. If pis a zero of y, and thus of ¢, the multiplicity of p as a zero
of wis exactly equal to the multiplicity of p as azeroof ¢ - 2.

Under these conditions, the rational function g(x, ¥) = ¢(x, ¥)p(x, ¥)
is well defined and continuous everywhere (g does not have
poles). It has exactly the same zeros as f, and the multiplicity of
every point p in Z(g) = Z(f) as a zero of g is exactly 2.

So, let us construct y. First, denote with f, and f, the two par-
tial derivatives of f. A point p is singular il and only if it is a
common zero of £, f,. and f,. Since the degrees of f, and f, are at
most d — 1 while the degree of fis d, let us define a new
polynomial:

fulx, ¥y =d flx,y) = (xflx, y) + ¥ fi(x, )

The degree of f,. is at most d — 1 because of Euler’s formula,'” that
is, the leading form f* of f satisfies the following identity:

dfi(x, y) =x fi(x, p) +y fi(x, )

The common zeros of f, f,, and f, are exactly the same as the
common zeros of f., f., and f,, because the construction is
reversible:

flx,y)=Ud(f.(x,y) +x f(x.3) + ¥ f(x. ¥))

Another way to construct f,. is to first homogenize f(x, y) with a
new variable w,

o

fwax,y)= Y w (%)

A0
obtaining a homogeneous polynomial of degree d in three vari-
ables, then differentiate with respect to the new variable:

d—1

Fulw,x,9)= Y (d =™ £ (x,7)

h=0

Finally, dehomogenize and divide by d:
o1

-’{:’“('r’y) o l fw (l,x,y] T Z%fh(x’y)

o
J h=ll
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Let w(x, y) =f.(x, ¥)* + [, ¥)* + fi(x, ). The degree of wis
exactly 2d — 2, because at least one of f, or f, should have degree
d -1, and none of the three has degree larger than d - 1. By con-
struction, the sct of zeros of y is exactly equal to the set Z(f")
of singular points of f, and so, a subset of Z(f) = Z(¢). The only
property that remains to be proved is the following:

Lemina 2. If ¢(;}) =0, then m(p; y) =m(p: 9} - 2.
Proof: If m(p; f) = k >0, after translating the origin to p, we
can write the polynomial f as a sum of forms:

d

ERIEDIWALR)

h=k

* with the form f* not identically zero. The two partial derivatives

are then
o
IREREDWHER)
h=h
o
IHESIEDIHES)
h=k

where f*and f} are forms of degree & — 1, and at least one of them
is nonzero, again from Euler’s formula.'* It follows that either
m(p:f)=k-1orm(p;f)=k~1, thatis,

min{m(p; f.), m(p; f,)) = m(p: f) - 1

This is also true for functions of more than two variables. Fi-
nally, by construction, m(p; ..} 2 k — 1 as well. We can conclude
that m(p; y) =2k - 2.

Note that the construction of f_., as well as the construction of
v. depends on the location of the origin of the coordinate sys-
tem. Once we choose a point p = (i, v), we first translate the ori-
gin of the polynomial to p, then construct ¢ and . Different
rational functions are used at different locations.

Now we need to extend our intersection test for polynomials
to the rational function g = ¢/y. As before, after translating the
origin we can just assume that p = (0, 0). A second assumption
is that w(p) = 0, and so &(p) = 0, because if y(p) =0, the curve
clearly cuts the box. Since rational [unctions are analytic, in a
certain neighborhood of the origin we can cxpand g as a con-
vergent series:

g(x.y)= ig”(—w’)

f=l

where g” is a form of degree £ or identically zero. We can com-
pute the forms g%, g', ... from the following recursive equations:
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0\'] = lpngu

B! =yig! +ylg"

¢'1:.' 2. 2 q!{]g'zfi 2 sy e w}.d— .".g[l (6)
M- = Ilflgg‘"_ B i w:d B

q)ﬁrf i Ilrig'znf i wln‘ 252

0 :wngzdu_’____ w;d 2g,2lk

with the last equation valid for k=1, 2. 3, .... Then we general-
ize the inequality [f{(x, v)| = F, - ZJ_, F,£" to an infinite sum:

le(x.y)2 Gy - 3.Gye" = Gle)
h-1

where the coefficient G, is computed from the coefficients of
the form g*(x, y) as before:

(-"#r T3

I where g"(x,y)= Y g x'y/ N
e itj=h

The analytic function of one variable G(e) behaves as the poly-
nomial £(g). That is, it is positive at the origin and decreases mono-
tonically for £ > 0. Thus, it has a unique positive root. We don’t
need to compute this root either. To test whether g has no zeros
in a box B((0, 0), 8), we just need to evaluate G(8). If G(3) > 0,
then g has no zeros in the box. And here we have a problem. If
a partial sum Xf_, G,8" is negative, we can stop the evaluation
and accept the box for further subdivision. However, to be sure
that G(8) > 0, we need to perform an infinite number of opera-
tions, and we cannot do that. The solution is to truncate the se-
ries and redefine G(g) as a polynomial plus an extra term:

=G, - Zc'h“— Gy I( )

where G,. ... G, are defined in Equation 7, but G,,, (&) will
bound the tail of the series expansion of g:

Zg (x. )

h=2d+1

< Gyyule)

for lI(x, y)Il..<e. To construct G, ;, we need the following result:
Lemma 3. Let&', ..., &% v!, ..., v", M be real numbers. Let us
define v+"=Elvi-n-1 4+ 4+ ﬁ“vh and K, = max({lvi, ..., wW=2-1},

for j= 1. 1f M satisfies the inequality IE'| + ... + [&" < M <1, then

<nK M /(1= M)

m
S

j=rn+l

forrz1.

20

Proof: First, note that for every j = 1 we have

il = |Elvi=n=l 4 |+ Emvi]
IE+ ... +1EM) max{vi, ...,
=M KJ,-

rvj+ai—1}

Now, from the previous two incqualities we obtain

K, =max{lvitel, L w21
<max{M K, ... MK, , \|=MK,
and by induction, K, ,,, < M" K, for & = 1. Finally, for r = 1 we
have
o oo J (e e
Z > < Z Z va+[;+h ' -
j=r i+l Pr—-Ul; 1
Z{HK] ||'rm]n} = Z{nM”hK } &
h=0 - )

nK,M™y M
h=0

nK M /(1-M)

Now we compute G,,, (€) as follows. First compute the co-
efficients of the forms g%, ..., g™ with the recursive Equation 6,
then evaluate the coefficients G, .... G,, of the bounding poly-
nomial. Then apply Lemma 3 for n=2d, r =1, & = —y )y, for
j=1,...,2d-2,8¥ =¥ =0, and vi=g/, forj=1. ..., 2d. Note
that tlu, recursive equation of the lemma is nothmg but the last
line of Equation 6 and that everything here is a function of the
point p=(x, y), even the bounds M and K. We have some free-
dom in choosing M, which we will make a function of e. The
form &(x, y) satisfies the inequality E(x, y) <, lI(x, v)II*, where
E, =%, 6l and & =X ,,_, & x'y. We take

M(e)=E;e+...+E,,eH
Note that M(g) is a monotone function, and M(0) = 0. So, for
small g, the hypothesis M(g) < 1 is satisfied. If it is not satisfied
for the current value of e, subdivide the cube cven further.
Clearly, the condition M(g) < 1 will eventually be satisfied after
a number of subdivisions. We can always replace K, =
max{lg'l, ..., Ig¥~2l} with an upper-bound function of £. Since
Erio1= 0= 0, we set

K(g)=max{Ge. ..., G,y ¥ 2}

This is also.a monotone function of €, and K,(0)=0. Observe that
K(g) is independent of G,, which is assumed to be different
from zero. Finally,

Gogi(€)=2d K (e) M(e) [ (1 — M(g))

Note that at least G,,, () = O(g?).
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Figure 7. Sphere: £ + ¥* + 22 — 2.25 = (. Box center (0, 0, ). Box side 4.

Figure 2 shows examples of curves rasterized with the algo-
rithm of Figure 4 based on this test.

Rasterizing surfaces and
surface-surface intersections
The algorithms described above can be trivially extended to
dimension three and above. In dimension three we start with a
cubical box

B((u,v,w), 8 ={(x, v, 2): llx—t, y—v, 2 — w)ll_ < 8}

and a polynomial of three variables f{x, v, z) of degree d. We can
extend the recursive subdivision algorithm to three dimensions
by subdividing the cube into eight subcubes. I introduced the
tests in dimension two to avoid overloading the reader with no-
tation, but we can use Horner's algorithm in dimension three
and above. To determine whether the polynomial fhas zeros in
a box B((u,v,w),8), translate the origin to p = (1, v, w), then test
the box B((0, 0, 0), §). After translating the origin, write the
polynomial f(x. y, z) as a sum of forms of increasing degree:

d
flxy2)= fH(x..2)
h=0)
where

et = Y fuxyiet
i+ j+k=h
T'or the first test, we define the coefficients of the bounding poly-
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nomial F(g) = F,— Z¢_| F,&" as follows:

Far z‘f}m‘

i+ jrk=h

and we obtain the corresponding test for dimension three: If
F(8) > 0, then the polynomial f does not have zeros in the box
B((0, 0, 0), 8). Figure 7 shows the result of applying the algo-
rithm based on this test to the simple case of a sphere. I ren-
dered the results at the end of each subdivision level with a
standard ray-tracing algorithm. You can extend the new test in-
troduced in the previous section to 3D in a similar way, but 1
leave the details to the reader.

The set of regular zeros of a polynomial define a surface (if
not empty). However, the set of singular points can be a union
of isolated points, curves, and even surfaces. For example, the
surface of the heart in Figure 8 (next page) has two isolated
singular points (the cusps at the top and the bottom). It also
has a curve of singular points: The intersection of the surface
with the plane z =0is an ellipse, and all the points on this el-
lipse are singular. You can observe a fattening around that curve
due to using the simpler test for this picture.

In the case of the Cartan’s umbrella in Figure 9 (next page),
the z axis is the set of singular points. Unlike the heart, not all
the singular points belong to the boundary of the set of regular
points, The algorithm correctly keeps track of a neighborhood
of all the points of the surface, including the singular points.

In fact, this algorithm can render the intersection of two reg-
ular surfaces by representing it as a completely singular sur-
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Figure 8. Heart (2v? + y* + 22 - 1)* — (1/10)x°z* - ¥2z°. Box center (0, 0, 0). Box side 2.5,
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Figure 10. Intersection of two
cylinders v* + (z - 1P -2 =0,
¥+ (z+1)*-2=10, as a singular
surface (x* + (z - 1)2 - 2)%+
P+ (z+1)y-22=0.

Box center (0, 0, 0). Box side 4.

Level 2

face. Figure 10 shows an ex-
ample of this process. The in-
tersection of two cylinders is
rendered by applying the sub-
division algorithm to the sum
of squares of the two polyno-
mials defining the individual
surfaces.

As a particular case, we can
use the algorithm to visualize
and explore surfaces with sin-

Level 5

-o

Level 3 LNl i
Level 6 Level 7

gularitics. Simultaneously, we
can render the singular space,
defined as the set of zeros of the polynomial

ylx, y, 2) =l y 2P +filx, 9, 2P + [i(x, y, 2) + £l y, 2

uscd in the desingularization test. The user can choose regions
of the original surface to explore in more detail based on the re-
sults of rendering the singular points.

This algorithm provides a primitive tool. both to visualize al-
gebraic surfaces and space curves in 3D and to search for sin-
gularities. Right now, the algorithm results in a set of cubes
containing the curve or surface. For regular surfaces, we can
use a marching cubes type of algorithm* to compute an ap-
proximate triangulation of the surface. The problem is how to
deal with singular cases. 1 am currently working on how to deal
with this problem.

Extensions to dimensions higher than 3 are left to the reader.
This approach is not practical in very high-dimensional space,
though, because each box must be subdivided into 2" subboxes,
where n is the dimension. Storage problems could arise casily.
As one of the reviewers pointed out, you can also extend this
work from squares and cubes to rectangles and cuboids. Then,
binary rather than octree division could be performed. This
would conform more tightly to the zeros of the polynomials
with less division, which would somewhat ameliorate the stor-
age problem when working in higher dimensions. a
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