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Abstract— Interest in algebraic curves and surfaces of high
degree as geometric models or shape descriptors for different
model-based computer vision tasks has increased in recent years,
and although their properties make them a natural choice for ob-
ject recognition and positioning applications, algebraic curve and
surface fitting algorithms often suffer from instability problems.
One of the main reasons for these problems is that, while the
data sets are always bounded, the resulting algebraic curves or
surfaces are, in most cases, unbounded. In this paper, we propose
to constrain the polynomials to a family with bounded zero sets,
and use only members of this family in the fitting process. For
every even number d we introduce a new parameterized family
of polynomials of degree d whose level sets are always bounded,
in particular, its zero sets. This family has the same number of
degrees of freedom as a general polynomial of the same degree.
Three methods for fitting members of this polynomial family to
measured data points are introduced. Experimental results of
fitting curves to sets of points in R? and surfaces to sets of points
in R® are presented.

Abstract— Bounded algebraic curves and surfaces, algebraic
curve and surface fitting, algebraic invariance.

I. INTRODUCTION

N the past few years several researchers have started using

algebraic curves and surfaces of high degree as geometric
models or shape descriptors in different model-based computer
vision tasks. Typically, the input for these tasks is either an
intensity image or dense range data. While early approaches
to model-based computer vision focused on polyhedral objects
or the blocks world [33], more recent work has considered
curved objects that are typically modeled by collections of
curved primitives. In nearly all of this work, the primitives
have been natural quadrics (spheres, ellipsoids, cylinders, and
cones) [8], [12], superquadrics [3], or a well-defined subset
of generalized cylinders [5], [11]. Algebraic approaches for
recognizing and locating objects represented by implicit (or
parametric) polynomial surfaces of degree higher than 2 have
only recently been proposed [25], [27], [39], [38].
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One of the fundamental problems in building a recognition
and positioning system based on implicit curves and surfaces
is how to fit these curves and surfaces to data. This process
will be necessary for automatically constructing object models
from range or intensity data and for building intermediate
representations from observations during recognition. Several
methods are available for extracting straight line segments
[15], planar patches [17], quadratic arcs [1], [4], [9], [14],
[18], [26], [32], and quadric surface patches [7], [8], [12], [17],
[21] from 2-D edge maps and 3-D range images. Recently,
methods have also been developed for fitting algebraic curve
and surface patches of arbitrary degree [13], [25], [28], [27],
[371, [39], {38]. This paper primarily addresses the problem
of fitting bounded algebraic curves and surfaces to point data.
Relatively little work is available on this subject, not even for
the particular case of ellipses or ellipsoids. Just recently Keren,
Cooper, and Subrahmonia [26] have independently developed
similar methods for the limited case of quartic curves and
surfaces.

In most work in computer aided design and computer vision,
a surface is represented parametrically as a smooth vector
function s : R?> — R3 where each coordinate of s is typically
either a polynomial or ratio of polynomials. Examples of para-
metric surfaces include planes, Bezier patches, nonuniform
rational B-splines, and some generalized cylinders. Bicubic
patches, which are the most prominent type of surface in
computer aided design [16], [36] are given by polynomials
with a maximum degree of 3 in each parametric coordinate.

An implicit surface is the set of zeros of a smooth function
f : R® — R of three variables:

Z(f) = {(z1,m2,23)" : f(z1,22,23) =0} .

Similarly, an implicit 2-D curve is the set Z(f) = {(z1,z2) :
f(z1,72) = 0} of zeros of a smooth function f : R? — R
of two variables. The curves or surfaces are algebraic if the
functions are polynomials. Other common surface represen-
tations such as the quadric surfaces (e.g., cones, ellipsoids,
hyperboloids, etc.) admit both a parametric and an implicit
form. However, there are some algebraic surfaces (third order
and higher) that can only be represented implicitly.
Although implicit algebraic curves and surfaces have many
good properties that make them the natural choice for object
recognition and positioning, parametric curves and surfaces
still outperform them in a fundamental area. More stable or
robust algorithms are known to approximate sets of measured
data points by parametric curves and surfaces than by their
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implicit counterparts. One of the main problems is that,
while the data sets are always bounded, the algebraic curves
or surfaces fitted to them are, in most cases, unbounded.
Additionally, very small changes in the coefficients of the
polynomials often produce very large changes in the global
shape of the curve or surface. In general, the notion of locality
is partially lost during the fitting process. One possible solution
to this problem is to constrain the coefficients of the defining
polynomials in such a way that the curves or surfaces defined
by these polynomials are always bounded. In general, there
are two ways to introduce these constraints. First, constraints
on the coefficients can be expressed implicitly by a system
of equality and inequality equations. Alternatively, the co-
efficients of the polynomials can be specified as functions
of unbounded parameters; consequently the polynomials are
restricted to a family with the desired properties. In this paper,
we concentrate on two particular families of parameterized
polynomials that leads to certain computational advantages
during fitting. A well-known example of a parameterized
family of implicit surfaces is the family of superquadrics,
which have up to eight shape parameters if bending and
tapering are considered (plus six more for pose) [3]. However,
eight degrees of freedom leaves little shape control, and
something more general is needed.

As an example of one of the presented parameterizations
of algebraic curves, consider the case of conics. The only
bounded conics are the ellipses. A nonsingular quadratic
polynomial in two variables can always be written in matrix
form as f(x1,22) = X'AX, where X = (1,21.22)" and A is
a 3x3 symmetric matrix. Now, every ellipse can be represented
as a level set of the polynomial f(zy,z3) = X'AX where
A is positive definite. A matrix A is positive definite if
and only if A = BB? for certain nonsingular matrixes B,
which can also be taken symmetric. Thus, every ellipse can
be represented as a level set of an element of the family
of quadratic polynomials {f = X!B2?X : |B| # 0}. The
coefficients of the members of this family are quadratic
functions in the elements of the matrix B.

In this paper we generalize the previous construction to
higher degree and higher dimensional polynomials. Only poly-
nomials of even degree are considered, because the level sets
of polynomials of odd degree always define unbounded curves
and surfaces. We show that every polynomial g(z) of even de-

gree d = 2k in n variables z = (21, - -, x, )¢ can be written in
a canonical way as a quadratic form g = X*AX in the vector
X = (1,1, -,28) of monomials of degree less than or

equal to &k, where A is a symmetric matrix and a linear function
of the coefficients of g. We then consider the family of polyno-
mials {f = X!B?X : |B| # 0} whose level sets are bounded
curves or surfaces. Not every bounded curve or surface of
degree d can be represented as a level set of a member of this
family, but we show that the family is rich enough in terms of
shape description power. In particular, it has as many degrees
of freedom as a general polynomial of the same degree.

Fig. | shows an example of fitting an unconstrained versus
bounded fourth-degree surface to range data. Note that the
unbounded surface has a hyperboloid-like shape while the
bounded fit leads to a more faithful representation.

(a) (b)
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Fig. 1. Unconstrained versus bounded surface fitting to range data. (a)
A range image of some fruit from the NRCC range database. (b) Data
points represented in 3-D of region FRUII in the image. (c) Unconstrained
fourth-degree algebraic surface fit. (d) General bounded fourth-degree fit.

The rest of this paper is organized as follows. In Sections II
and III we review some previous results, and introduce the no-
tation needed to define the problem that we solve in this paper.
A reader familiar with the subject can skip them. In Section IV
we establish the connection between positive definite forms,
i.e., forms that attain only positive values, and polynomials
with bounded level sets. In the same section we show that
linear families of polynomials with bounded level sets are quite
limited, that at least a quadratic parameterization is needed,
and that a quadratic parameterization is rich enough. In Section
V we introduce Euler’s theorem. Euler’s theorem lets us write,
in a canonical way, a form of even degree d as a quadratic form
in the monomials of degree d/2. In Section VI we use Euler’s
theorem to construct a canonical quadratic parameterization of
positive definite forms and prove several important properties
of the parameterization. In Section VII we use the previ-
ous parameterization of positive definite forms—and the two
different representations of polynomials discussed above—to
construct two parameterized families of polynomials with
bounded sets of zeros. Experimental results of fitting curves
and surfaces to 2-D and 3-D point data, respectively, using
one of the parameterizations are presented in Section VIII
We conclude with a brief discussion of some future research
directions in Section IX. Finally, to improve the readability of
the paper we have moved most of the proofs to the Appendix.

II. ALGEBRAIC CURVE AND SURFACE FITTING

In this section we define what we mean by a parameter-
ized family of polynomials. Such a family in turn defines a
parameterized family of algebraic curves or surfaces. We then
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review some previous results on fitting algebraic curves and
surfaces to measured data points (i.e., < selecting the member
of the family that is nearest to the data set), and finally discuss
a necessary property (covariance) of these families.

A. Parameterized Families of Polynomials

The first step of the fitting process is to restrict the defining
polynomials to a family parameterized by a finite number of
paramieters. Let ¢ : R™*™ — R be a smooth function, and let
us consider the maps f : R® — R, which can be written as

f(@) = ¢ulz) = 4(u,2)

for certain u = (ug, -+, u,)* € R". We will referto uy,-- -, u;
as the parameters and to x1,---,x, as the variables. The
family of all such maps will be denoted

Fo = {f:3uf=¢u},

and we will say that ¢ is the parameterization of the family
F3. The set of zeros Z(f) of a member f of %, is a 2-
D curve when n = 2 and a surface when n = 3. For the
rest of the paper we will impose a further restriction on the
parameterization ¢; we will request that members of Ty be
polynomials of degree < d, for certain positive integers d.
As an example, consider the family of polynomials given by

P(u,z) = 2% + 22—’

In this case, there is one parameter u and two variables 1, 5;
clearly, the zero set of a member of this family is simply
a circle centered at the origin, and the one shape parameter
determines its radius.

An important class of parameterizations, which corresponds
to several cases of algebraic curves or surfaces, is the linear
model. In the linear model the maps can be written as follows:

$(u,2) = w Xy(€) + - + u, X (z) = FX(2), (1)

where F' = (uy,-+-,up) is a row vector of coefficients, the
transpose of the parameter vector, and X = (Xi,---,X,)?:
R™ — R" is a fixed map. We will say that a parameterization
of this kind is a linear parameterization, and the corresponding
family a linear family. For example, the family of all polyno-
mials of degree < d in n variables can be written as a linear
family. Just take X as the vector of monomials of degree < d.
For example, for n = 2 and d = 2 we can take

1

I

Z2

X(zi,z2)=| 3
I1

Irix2
2
Ty

As will be seen in subsequent sections, the linear model
is important because fitting is quite simple. Unfortunately,
linear families of polynomials with bounded zero sets are
quite limited, and at least a quadratic parameterization will
be needed.

289

B. Fitting

Given a finite set of n-dimensional (n = 2 or n = 3)
data points D = {p1,---,p,}, the problem of fitting an
implicit curve or suiface Z(f) to the data set D corresponds
to determining the f € F that minimizes the mean square
distance

q
=3 dist(ps 2(1) @
=1

from the data points to the curve or surface Z(f).
Unfortunately, there is no closed form expression for the
distance from a point to a generic implicit curve or surface,
not even for algebraic curves or surfaces. This has motivated
a number of approximations to the exact distance.
The simplest approach to fitting is based on the algebraic
distance :

dist2(ac, 2(f)) = f(z)?,

because without noise f(z) vanishes for all z on Z(f). For
linear families of polynomials, computing the surface coef-
ficients is thus reduced to an eigenvalue problem. Althcugh
computationally attractive, fitting based on this distance may
be biased and is not covariant, as discussed in Section III-C.

Taubin based his algebraic curve and surface fitting algo-
rithms [37], [39] on the first order approximation

74() -
IVf ()2
The mean value of the function (3) on a fixed set of data
points is a smooth nonlinear function of the parameters, and
can be locally minimized using well-established nonlinear least
squares techniques. However, since one is interested in the
global minimum and wants to avoid a global search, a second
approximation

dist*(z, Z(f)) =~

FMF?

= FNFT’ “

% =1 2(p)
T V@)

is used to turn the choice of initial parameters for linear
families into a generalized eigenvalue problem. More recently,
Taubin developed a more accurate approximation for graphics
applications [40], [42], [43], which he also used for algebraic
curve and surface fitting [41], yielding better results than with
(3). This method directly applies to fitting unconstrained alge-
braic curves and surfaces, because the family of polynomials
of degree < d in n variables is a linear family. Later on we
will show the generalized eigenvalue fit method is related to
bounded surfaces as well.

Finally, Kriegman and Ponce [27], [30] have shown that
elimination theory can be used to construct a closed-form
expression for the exact distance from a point z € R™ to
the zero set Z(f) of a polynomial.

For some applications, the elimination of 7 variables fol-
lowed—at every step of the minimization and for each data
point—by the computation the roots of D may be computa-
tionally impractical (see [39] for an alternative approach based
on constrained optimization). In the experiments described in
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Section X, we have either minimized the algebraic distance
or used Taubin’s method to fit bounded algebraic curves and
surfaces to 2-D and 3-D data.

C. Covariance Properties of Parameterized Families

Any one of the previous fitting algorithms can be seen
as an operator A, which assigns a set of data points D =
{p1.---,pq} to a member f of the parameterized family Fs

D f=AD)c %

Since we want to use the results of our fitting algorithms
for object recognition, our main concern is viewpoint in-
dependence, or, to be more precise, covariance. That is, if
z' = Rz 4t is a rigid body transformation (i.e., R € SO(n)
is a rotation in R™, and ¢ € R™ is a translation) which
represents a change of coordinate systems, and we denote
D ={p,- -, Py}, where p} = Rp; +t are the coordinates of
the points in the new coordinate system, we expect f/ = A(D’)
and f to be related as follows: f'(z') = f(z). Thus, if
two range images of a set of points were acquired from two
locations, the two resulting surfaces should only differ by a
rotation and translation. This requirement imposes a restriction
on the parameterized family. If f is a member of F,, for
every rigid body transformation ' = Rz + t the function
f(R*(z — t)) should also be a member of Fy. That is, if
f(z) = ¢(u,z) for the parameter vector w, there must exist
another parameter vector «’ such that f(R(z —t)) = ¢(/, z).
In other words, the family %, has to be closed under the action
of the motion group.

When the family is not closed under the action of the motion
group, one can always enlarge the family by introducing new
explicit transformation parameters. If ¢(u, ) is the parameter-
ization of the family that is not closed under the action of the
Euclidean group, we can look at the expression ¢(u, Rr+t) as
a function of the parameters (u, R, ¢) and the space variable z,
where the rotation matrix R can also be parameterized using,
for example, the three Euler angles. A typical example of this
procedure is the case of superquadrics [3], [22], [37], [38]. But
the fitting algorithms become more complex. It is better to use
families that are already closed under rotation and translation.
If an object-centered coordinate system is required, in the case
of polynomials it can be computed from the coefficients after
fitting [44].

Of course, the closure of the family under rotation and
translation is not sufficient to guarantee the covariance of the
fitting algorithms, but it is clearly necessary. For example,
the family of unconstrained polynomials of a given degree is
closed under even more general transformations—projective,
to be precise—and the fitting algorithms described above are
covariant under similarity transformations (rotation, transla-
tion, and scale) [39], [38].

We will study the closure properties of families of polyno-
mials with bounded zero sets at the end of Section IV.

III. POLYNOMIALS AND FORMS

In this section, a few different notations will be introduced to
represent multivariate polynomials of degree d in n variables.

From now on, polynomials will be written expanded in Taylor
series at the origin

f(‘T) = f(xlz'“vxﬂ) =

1 «
'&TFQ'T 3

e

(5)

where the vector of nonnegative integers o = (a1, -, )¢
is a multiindex of size |o| = a1 + -+ + Qp, a! = a1l !
is a multiindex factorial, F,, € R is a coefficient of degree
|af, and z* = z{'-..z2% is a monomial of degree
|a|. There are exactly hy = ("t¢7') = ("+¢-') different
multiindexes of size d, and therefore the same number of
monomials of degree d. A polynomial of degree d in n
variables has hg + hg_1 +---+ hg = (*}) coefficients,
as many as a homogeneous polynomial of the same degree
but in n+1 variables. For example, a polynomial defining a
quartic surface (n = 3,d = 4) has 35 coefficients, while a
sextic surface (n = 3,d = 6) is defined by 84 coefficients.
Since a polynomial is homogeneous in its coefficients and six
parameters determine the position and orientation of a surface,
quartic and sextic surfaces are defined by 28 and 77 shape
parameters, respectively.

If all the elements of a parameterized family F, are poly-
nomials of degree < d, we will also write

o(u,z) = Z LFo(u)z™ .

0<[al<d

where F,,(u) is a scalar valued function in the parameters u.
A polynomial v(z) is homogeneous (called a form) if all its
terms are of the same degree

L,z 6)
|a)=d

¥(z) =

where ¥, € R. Equivalently, a polynomial ¥(z) is a form
of degree d if and only if ¢(fz) = 8% (z). This will prove
useful in the proofs of some of the forthcoming lemmas.

Forms are related to nonhomogeneous polynomials in two
ways. Both methods will be used to define different parame-
terizations of families of polynomials with bounded level sets
in section VIL

A. A Polynomial as a Sum of Forms

In the first place, every polynomial f(z) of degree d can be
written in a unique way as a sum of forms

d
fl@) = > ulz), %)
k=0

where () is a form of degree k and v4(z) # 0. The form
4 is called the leading form of the polynomial f.

B. A Polynomial as a Form

In the second place, by introducing homogeneous coordi-
nates, every curve or surface described in Euclidean space by a
polynomial in n variables can be described in projective space
by an associated form in n+1 variables [49]. If ¥ (zo, - - -, Z,)
is a form of degree d in n+1 variables, and f(vq,---,v,) is a
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(nonhomogeneous) polynomial of degree < d in n variables,
the one-to-one correspondence is given by

"f/)(m(]vmlz"'amn) = f(.Tl/.’L'[),"',‘Tn/.’lf[]).'Eg

f(vlv"'7vﬂ) = ¢(17"117"':1}n) .

In other words, every polynomial in n variables is the restric-
tion of a form in n+1 variables to the hyperplane {z : g = 1},
and every form in n+1 variables is totally determined by its
restriction to this hyperplane.

®

C. Monomials and Vector Notation

We now introduce a more compact vector notation for
representing polynomials by introducing a linear ordering
of multiindexes; this will allow us to represent a form as
the product of a vector of coefficients W[y and a vector
of monomials X{g(z). Although there are many possible
orderings, we will use only the lexicographical order (defined
in the Appendix); the same results can be obtained using other
orders. The set of monomials {z%/v'a! : |a| = d} of degree
d, lexicographically ordered, define a vector of dimension kg,
which we will denote as X4 (). For example,

t

X[a](-’Bl,-’Ez) =

The reason for the introduction of the square roots will be
evident later on, but with them there is a nice relation between
the Euclidean norm of X4 and the Euclidean norm of z.

Lemma l: If x and y are two vectors of independent
variables, then X(4(2)'X[q(y) = X(z'y)%. In particular,
X (2)I1* = Fll=l*=P.

Note that most of the proofs appear in the Appendix.
Consistent with this notation, the vector {¥,/va! : |a| = d}
of coefficients of ¢ will be denoted ¥(4). In this way, a form
1 of degree d can be written in vector notation as

P(z) = YyXa(e) . )

Finally, for every pair of indexes j, k, the rank one matrix of
monomials X{;}(x) Xz (2)* will also be denoted X xj(z).

IV. POSITIVE DEFINITE FORMS

There is an intimate relation between polynomials with
bounded zero sets and algebraic inequalities. In this chapter we
study the relation between positive definiteness of the defining
polynomial and boundedness of the corresponding set of zeros.
We start with forms.

A form ¢ is positive definite if y(x) > 0 for all £ # 0 (by
homogeneity t(0) = 0), and nonnegative definite (sometimes
called positive semidefinite) if ¥(z) > O for all z € R™.
Negative definite and nonpositive definite forms can be defined
in a similar way. A form will be called definite if it belongs to
one of the previous four categories, and indefinite otherwise.
Since the map ¥(x) — —%(x) establishes a one-to-one
correspondence between nonnegative and nonpositive definite
forms, it is sufficient to study the first two classes. The first

important result is that only nonzero forms of even degree can
be definite.
Lemma 2: There exist no nonzero definite forms of odd

degree.
For every form 1 of degree d, the two constants

. ¥(z)

min ¥(z) = n——=

wM[N lzll=1 1/)( ) z#0 Llpl&”d)

z

ax Y(z) = max-—35

P = Y= R g

are finite, because the unit ball "~ = {z e R™ : ||z]| = 1}
is compact and ¢ is continuous, and by definition they satisfy
the following inequality:

"/)MINHCC”d <yY(x) < wMAx”-’lf'Hd

for every z # 0. Clearly, ¢ is positive definite if and only if
P > 0, and if 9, and vy are forms of the same degree, then
(1 + Y2)y = (¥1)miv + (Y2)m - Finally, it is not difficult
to show that every form of even degree can be written as the
difference of two positive definite forms of the same degree,
but we will omit the proof.

(10)

A. Level Sets of Positive Definite Forms are Bounded

For every function f the set Z)(f) = {z € R™ : f(z) = A}
will be called the set of level ) of f, and the elements of Zx(f)
points of level A of f. Our interest in positive definite forms
is partially due to the following result.

Lemma 3: The level sets of a positive definite form are
either bounded or empty.

Proof: Let 1 be a positive definite form of degree d,
and let AeR. If A < O, clearly Zx(¢)) = 0. If A = 0 we
have Zo(vp) = {0}, because (0) = 0 by homogeneity, and
(z) > 0 for z # 0 by hypothesis. If A > 0, we have

Yuaxllz]|? = X = 9(z) > Yunell[|? > 0

1/d 1/d
o<(mm) <t (m0)

Note that all the sets of level A > 0 of a positive definite
form are in one-to-one correspondence with each other. In
fact, for each A > 0, the map S"~! — Z,(¥) given by
z +— (M (x)Y/9z, defines a diffeomorphism between the
sphere and the level set 'Z,(¢). For example, Fig. 2 shows
the sets of level 1/8, 1/2, and 2 of the form ¥(z1,z2) =
7t — 32323 + 373

The converse of Lemma 3 is also true.

Lemma 4: The level sets of a nonpositive definite form are
either empty or unbounded.

If we now look at a polynomial f in n variables as the
restriction of a positive definite form 4 in n 4 1 variables to
the hyperplane {z € R"*! : zp = 1}, as in (12), we conclude
that the level sets of the polynomial f, being the intersection
of a hyperplane with a bounded set, are also either bounded
or empty. For example, Fig. 3 shows the set of level 3/2 of
the form ¢ (z¢, T1, z2) = 22§ — 3z3x} + 32 — 3v3xd + 625 —
2x37.

and so
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(a)

()

N/
[

©

Fig. 2. Level sets of the positive definite form ¥(z1.22) = 2} — 32222 + 3z3. (a) Level 1/8. (b) Level 1/2. (c) Level 2.

(@)

Fig. 3. (a) Set of level 3/2 of the positive definite form ¢ (zo, x1,72) = 22§ — 3z3x? + 323 — 3a2a + 62 — 2ada2. (b)

Intersection of the halfspace {z :

Note that although positive definiteness is a sufficient con-
dition for boundedness here, it is clearly not necessary. For
example, the form ¥(zo, 1, z2) = % + 23—z is not positive
definite, but f(z1,z2) = ¢(1,71,22) = 27+ 25 - 1is a
polynomial with bounded level sets. That is, the restriction of
a nonpositive definite form to the hyperplane 2o = 1 can be
bounded.

B. Polynomials with a Positive Definite Leading Form

If we now look at a polynomial f in n variables as a sum
of forms of different degrees, as in Section IV-A, the positive
definiteness of the leading form implies boundedness of the
level sets, and indefiniteness implies unboundedness.

Lemma 5: The level sets of a polynomial with a positive
definite leading form are either bounded or empty.

While a formal proof is given in the Appendix, using
projective geometry it can be seen that for the zero set
of a polynomial to be unbounded it must have a point at
infinity. Since points at infinity correspond to the leading form
vanishing for some nonzero point, a positive definite leading

. (b)

Ok

N

©

zo < 1} with the level set of (a). (c) Bounded intersection curve.

form implies that there are no points at infinity; consequently
the level sets are necessarily bounded.

Lemma 6: The level sets of a polynomial with an indefinite
leading form are unbounded and never empty. In particular,
level sets of odd-degree polynomials are unbounded and never
empty.

Note that if the leading form is nonnegative definite but not
positive definite, the boundedness depends on the lower degree
forms. For example, the level sets of f(z1,z2) = z} + 3 are
unbounded, but the level sets of f(z),z2) = z} + 2% are
bounded.

C. Families of Polynomials and Positive Definiteness

The next issue to be considered is how to parameterize the
family of positive definite forms of a given degree. Ideally, we
would like to find a linear parameterization, but unfortunately
the linear families of definite forms are quite limited, as the
following lemma shows.

Lemma 7: If 41 and 1, are two linearly independent forms
of the same degree, there exist constants p; and pg such that
the form i1 + pote is indefinite.
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It follows that a linear family of definite forms has dimen-
sion at most 1. And if % is a linear family of polynomials
of degree < d, all of them with definite form of degree d, the
subspace of forms of degree d of members of F;, being itself
a linear family of definite forms, must be one-dimensional. In
other words, in the linear model (see (1)), the only way to
obtain polynomials with definite leading form is to choose X
as a polynomial of degree d with positive definite leading form,
and Xy, --, X, as polynomials of degree < d. For example,
we can take X as a positive definite form, and X,, -, X,
as all the monomials of degree < d. In this way the resulting
linear family turns out to be closed under translation. If we also
want this family to be closed under rotations as well, there is
basically only one choice, i.e., Xi(z) = ||z||¢, because this is
the only form invariant under rotation.

Lemma 8: Let 1(x) be a form of degree d invariant under
orthogonal coordinate transformations. If d is odd, then 1 is
identically zero. If d is even, then ¢(z) = «||z||¢ for certain
constant .

We can apply the generalized eigenvalue fit method to these
linear families, and since in general the coefficient of X; will
be nonzero, the fitted curve or surface will be bounded. We
can also impose as a constraint that the coefficient of X; be
equal to 1. In this case the fitting can be reduced to solving a
linear regression problem [13], {31].

D. Forms that are Sums of Squares

Since linear parameterizations of definite forms are not very
powerful, we now look at quadratic parameterizations, i.e.,
where the coefficients of the forms are quadratic functions of
the parameters. The square of an arbitrary form of degree k
is a nonnegative form of degree d = 2k. A sum of several
squares of forms of degree k is also a nonnegative form of
degree d = 2k

V=€t an
The coefficients of i are quadratic functions of the coefficients
of £1,--,&, which can be seen as the parameters. One
naturally wonders whether the family of all positive definite
forms can be parameterized in this form or not. Unfortunately,
not every nonnegative form with real coefficients can be
represented as a sum of squares of forms. Hilbert’s 17th
problem, solved by Artin [2], establishes that every such form
can be represented as a sum of squares of rational functions.
A theorem by Hilbert [23] gives necessary and sufficient
conditions on the degree of the forms, d, and the dimension of
the space, n, for every nonnegative form with real coefficients
to be representable as a sum of squares of forms. Explicitly,
the conditions are n < 2, or d = 2, or (n,d) = (3,4). For
other values of (n,d) counterexamples can be constructed [6,
chapter 6], [31]. Although in general not every nonnegative
form with real coefficients can be represented as a sum of
squares of forms, the family of forms that can be represented
as sums of squares is very rich indeed, as we will see in
subsequent sections.

To define a parameterization for the family of forms that
can be represented as sums of squares, we need to know how
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many terms are sufficient in the sum. For that we have the
following result.

Lemma 9: Every form of degree d = 2k that can be
represented as a sum of an arbitrary number of squares of
forms of degree k can also be represented as a sum of at most
hy squares of forms of degree k.

The expression ¥(z) = X, ['k] M Xy, with M symmetric and
positive definite, defines a parameterization of the family of
forms of degree 2k, which can be written as sums of squares.
The main problem with this parameterization is that there are
many more degrees of freedom in the matrix M than coeffi-
cients of the form ¢, and so every form has an infinite number
of representations of this kind. This overparameterization can
be a problem for many numerical minimization algorithms.
The solution is to restrict the matrix M to have a particular
structure with fewer degrees of freedom, i.e., where the matrix
M itself is parameterized with fewer parameters. In the next
section we show a canonical way to do so.

V. EULER’S THEOREM

In this section we show how to write a polynomial of even
degree d as a quadratic form in the monomials of degree d/2
in a canonical way, as described in the previous section, with
the matrix M being a linear function of the coefficients of
the form. This representation will lead us to a very attractive
parameterized family of positive definite forms.

Let 9 be a form of degree d. For every pair of integers,
(7, k) such that j + k = d, the set of coefficients

{ arg Yoo tlal =510 =k}

lexicographically ordered in both indexes, defines an h; x hy
matrix, which we will denote W(; xj(x). Now we have all the
necessary elements to state Euler’s theorem in the form we
need. The classical proof for 7 = 1 can be found in [49]. For
completeness, the proof of the general case is included in the
Appendix.

Lemma 10 (Euler’s theorem): For every form v of degree
d = j+k, we have

(D@ = Xf@);0Xp )
= Z Z QA;L‘BT‘IJOH_BI'OH-ﬂ .
la|=3 |B|=k
In particular, every form ¢ of even degree d = 2k can

be written as a quadratic form in the monomials of degree
k= d/2:

(Hv(z)

Xiig (@) ¥ e Xix ()

- ZZ %ﬁ!\l}aﬂkﬁmoﬂ-ﬁ .

le|=|8]=F

(12)

VI. A PARAMETERIZED FAMILY OF POSITIVE DEFINITE FORMS
For every form ¢ of even degree d = 2k, let
Q) (@) X[tk] (m)‘l’[zk,k]X[k](m)

1
= W\Pa+ﬁwﬂ+‘r:’:a
|a|=|8|=]v|=k

+y
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i.e., using Euler’s theorem, we represent the form 1 as a
quadratic form in the monomials of degree £k = d/2, and
then we replace the associated matrix by its square. The forms
1 and Q(v) are both of the same degree d = 2k. The
fundamental property of the map @ : ¥ — Q(v), which makes
it useful for our purposes, is described in the corollary to the
following lemma.

Lemma 11: Let ¢ be a form of even degree d = 2k. If the
matrix ¥, ) is nonsingular, then Q(+) is positive definite.

Corollary: If ¢ is a form of even degree d = 2k, g is a
polynomial of degree < d, and the matrix W 1] is nonsingular,
then all the level sets of the polynomial f = Q(¢) + g are
either empty or bounded.

Since Q(%) is a form of degree d, we can also write it as
in (10):

QY)(x) = Y HQa(¥)z*,

Jee|=d

where {Qa(¥) : |a| = d} are the coefficients of Q(¢). Note
that for each multiindex « of size d, Q4(¢) is a quadratic
form in the coefficients of .

The quadratic map @ : ¥ — Q(¢) has two other properties
that make it even more useful for our purposes. We will
describe them here, but since the proofs are long and not
necessary for understanding the rest of the paper, we have
placed them in the Appendix. The first of these properties is
the covariance under rotations.

Lemma 12: If ' = Rz is an orthogonal coordinate trans-
formation, and ¢'(z') = ¢(R'z’), then Q) = Q(¢')

That is, it is exactly the same to change the coordinate
system first and then apply @ as it is to first apply @ and then
change the coordinate system. The second property is really
necessary for the good behavior of the Levenberg—Marquardt
algorithm.

Lemma 13: Seen as a map R* — RP4, ie., {U, : |a| =
d} — {Qua(¥) : |a| = d}, the map @ is locally one to one,
except for a subset of forms with coefficients satisfying a
certain algebraic equation.

(13)

VII. TWO PARAMETERIZED FAMILIES
OF EVEN-DEGREE POLYNOMIALS

As we explained above, forms are related to nonhomoge-
neous polynomials in two different ways. Every polynomial
can be written as a sum of forms of different degrees, or as
the restriction of a form in n 4+ 1 variables to the hyperplane
o = 1. In this section we define two parameterized families
of polynomials with bounded level sets based on these two
representations.

A. A Polynomial as a Sum of Forms

In this case we write a polynomial f of even degree d in
n variables as a sum of forms of different degrees (11), and
parameterize the leading form f; using the map Q(%) defined
in the previous section and the other forms linearly. That is,
this family of polynomials is parameterized in the following
way:

fz) = Q)(z) +g(z) ,

where 9 is an arbitrary form of degree d in n variables and
g(z) is a polynomial of degree < d in n variables. The
parameterization is quadratic in the coefficients of degree d
and linear in the rest.

The generalized eigenvector fit method can also be used in
this case to initialize the fitting algorithm as in the uncon-
strained case. Here we use the linear family parameterized as
follows:

f(z) = wllz]? + g(2) ,

where u; is the first parameter and g(z) is a polynomial of
degree < d in n variables. After this, and in order to initialize
the nonlinear least squares minimization, we still need to
compute the coefficients of the form 1 such that Q(¥) = ||z||%
fortunately, ¥ (z) = ||z||¢ is an eigenfunction of the operator

B. A Polynomial as a Form

Now we return to nonhomogeneous polynomials through
the one-to-one correspondence described in (12). That is, in
this section multiindexes have n+1 components (ag, -, @),
forms have n+1 variables zg, - -, z,, and nonhomogeneous
polynomials in n variables are obtained from forms through
the substitution o — 1.

Since in general the form Q(v) has no zeros other than
z = 0, we modify the parameterization defined by @ to obtain
a parameterized family of polynomials with nonempty, and
bounded, zero sets. Since the level sets of Q(¢) are bounded,
we can choose a particular level set, say A, and the new
parameterization will be Q(v) — A. The problem is that we
cannot take a fixed value of A, because for many forms,
Q(v) — A will still have empty zero set. Since we ultimately
want to use this parameterization to estimate an approximation
of a data set D = {p1,---,pq} by nonlinear least squares
methods, we can obviously include A as a new free parameter
in the parameterization of the family of polynomials to be
used; however, a better solution is to make A a function of the
data set and the coefficients of ¢, i.e., the parameters. That
is, we are looking for a function A(D, ) such that the level
set {(z1, +-,20)" + Q(¥)(1,21, -, Ta) = A(D,9)} best
approximates the set D in certain sense. We can choose it as
the minimizer of the approximate square distance with respect
to A, where f(z1,-+-,zn) = Q(¥)(1,21, -+, Zn)— A, but this
gives an expression that is expensive to evaluate. Instead, we
choose X as the minimizer of (4) with respect to A. Since the
denominator does not depend on A, the solution is given by

A(D.¥) = > 2Qa(¥)ma

|a|=d

: Z; QW) (p:) =

where m, is the moment of the data corresponding the
monomial z°:

1y ()

=1

my =

remembering that @ = (ag,- -, 0,) and 2% = z3° - - - 25 =
zt - 22" here, because zo = 1.
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In this way we obtain our desired parameterization

¢(¢’I17"'7x") = Z Qa(’(ﬁ)(.’ra —m(,) .

lal=d

(14

It parameterizes a family of polynomials that have zero mean
value on the data set, and, therefore, nonempty zero sets. The
other good property of this parameterization is that it is still
quadratic and homogeneous in the coefficients of ), and it
can be evaluated very inexpensively, as we will see in the
next section.

VIII. EXPERIMENTAL RESULTS

We have only implemented fitting using the parameterized
family described in Section VIII-A. We have conducted a
range of experiments, either minimizing the mean algebraic
distance between a point and a surface or using Taubin’s
method, which is based on a better approximation of the
geometric distance, and fitted quartic and sextic curves and
surfaces to contour and range data. The Levenberg—Marquardt
algorithm requires a set of initial parameters. In the
experiments using the algebraic distance, we have either
set all initial parameters to 1 or use as initial guess the
quartic z* + y* + 2* = 1, suitably translated and scaled to
enclose all data points. Both sets of initial parameters have
in general led to identical results at convergence. In the
experiments based on Taubin’s fitting algorithm, we used the
generalized eigenvalue fit method for bounded curves and
surfaces described in section IV-C for initialization.

We first present results obtained for algebraic surfaces
whose defining polynomial f = i + g has a positive definite
leading form ). As shown in the Appendix, Lemma 5 actually
shows that such a surface is enclosed in a sphere of radius
max{1, u/v}, where y is some constant and v is the minimum
eigenvalue of the matrix \11[22,2]. In practice, this means that
the eigenvalues of ¥% ,; give us an indication of the volume
enclosed by the surface, which allows us not only to ensure
that a surface fit is bounded but also to control the size of the
enclosed volume. This proves particularly valuable in avoiding
large surface components that might appear where there are
gaps in the data. We have implemented this idea in our fitting
algorithm based on the algebraic distance: Since all the eigen-
values of \11[22721 are positive, dividing the error of fit by the
trace of this matrix has the effect of maximizing v, therefore
minimizing the enclosed volume. We have not used this idea
in our implementation of Taubin’s fitting algorithm yet.

Figs. 4 and 5 show experiments in curve fitting using the
algebraic distance. The data points used in Fig. 4(a) actually
belong to a quartic curve. As shown in the figure, the curve
is correctly recovered. Fig. 4(b) shows the curve fitted to
a polygon entered by hand. Again, a good approximation
of the data is obtained. More interestingly, Fig. 5 shows
another example with a large gap among the data points (once
again entered by hand). In Fig. 5(a), the result of fitting an
unconstrained quartic curve is shown: A large component
is obtained because of the gap in the data. Fig. 5(b) shows
the excellent approximation obtained when fitting a bounded,
“minimum-area” quartic curve.
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Fig. 4. Fitting quartic curves to 2-D points (drawn as small circles).

Figs. 6 and 7 show experiments in fitting bounded quartic
surfaces to real range data, and again using the same imple-
mentation as in the previous examples. Fig. 6(a) shows the data
from a single range image of a torus, and Fig. 6(b) shows the
fitted surface. A good approximation of the visible part of the
torus is recovered, and the overall shape is definitely torus-like,
but the fit is clearly not as good. This is not surprising, since
real data is noisy and fitting cannot be expected to ‘‘invent’’
the hidden parts of a surface.

Fig. 7(a) shows a data set obtained by registering and
merging three range images of a pepper. Again, despite noise
and large gaps in the data, a reasonable surface model is
recovered, as demonstrated by Fig. 7(b). The model is visually
more satisfying than in the torus case, probably because the
distribution of the data points over the pepper’s surface is
much more uniform.

Figs. 1, 8,9, and 10 show examples of surface fitting based
on Taubin’s fitting algorithms. Figs. 1 and 8 further illustrate
the effect of partial data on the resulting surfaces. Both data
sets are subsets of real range data file from the NRCC range
image database [32]. In both figures we show the data, the
result of the unconstrained fourth-degree algebraic surface fit,
the result of the generalized eigenvalue bounded fourth-degree
fit (i.e., polynomials with leading form (22 + z3 + z2)? and
linear in the rest of the coefficients), and the result of the
general bounded fourth-degree fit.

Fig. 9 shows an example of general bounded fourth-degree
surface fit to a data set without missing data. This data is a
subset of a collection of CT scans slices. The surface is shown
from two points of view, and both with and without the data
superimposed. As can be observed, the surface gives a good
global approximation of the shape, but the details are lost. The
nose, the chin, and the ears are not well approximated by the
surface fit. The same kind of behavior can be observed in Fig.
10. The ridges of the pepper are not well approximated by the
fourth-degree surface fit.
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(a)

(b)

Fig. 5. Data points with a large gap among them. (a) Unconstrained fit,
(b) Area-minimizing fit.

In an attempt to get those details, we increased the degree,
and we fit a sixth-degree surface to the same data. The result,
which can be seen in Fig. 10, is not satisfactory. The effect
that we see here is basically the same as one can observe
when fitting, say, a second-degree curve to data that can be
well approximated by a straight line segment. Two branches
of the curve will be close to a single branch of the data. In
the case of surfaces the effect seems to be more severe. What
seems to be the problem in this case is that the data can be
coarsely approximated by an ellipsoid, and so a surface with
parameters close to the union of three very similar ellipsoids
will give a relatively good fit.

Experiments like this suggest that, apparently, the polyno-
mials with coefficients close to reducible polynomials, i.e., ®)
polynomials that are products of lower degree polynomials )

(the sets of zeros of the product is the union of the sets Fig. 6. (a) Real range data from a torus. (b) The recovered surface.
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(b)

Fig. 7. (a) Three range images of a pepper merged together as a single data
set. (b) The surface fitted to the pepper data.

of zeros of the factors), seem to be unstable regions of the
parameter space. More research must be done to understand
this phenomenon, and to control it. We intend to do so in the
near future.

IX. CONCLUSION

We have described a technique for stabilizing the implicit
function fitting process. The key drawback of implicit function
fitting methods described in the literature thus far has been the
unboundedness of the fitted curves and surfaces, or the lack
of shape description power. In this paper, trying to solve these
two problems, we have introduced two parameterized families
of polynomials whose zero sets are always bounded, with
enough flexibility in terms of shape description. Preliminary
experimental results with 2-D curves and 3-D surfaces are
encouraging, but they also point out some limitations that
require further study.
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(a) ®)

© S @

Fig. 8. Region of file CHERI from NRCC range database. (a) Data points
represented in 3-D. (b) Unconstrained fourth-degree algebraic surface fit.
(c) Generalized eigenvalue bounded fourth-degree fit. (d) General bounded
fourth-degree fit.

(d)
Fig. 9. Fourth-degree bounded algebraic surface fit to CT data. Two different
views, with and without superimposed data.

First, it is clear that the most satisfying fits are obtained
when the data covers most of the surface of the modeled
object. As remarked before, this is not surprising, since fitting
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(@ (b)

© ' )

Fig. 10. Sixth-degree bounded algebraic surface fit to the same CT data of
Fig. 9. The surface is shown from two different points of view, and with two
sections to show the multiple branches.

cannot be expected to ‘‘invent’’ the shape of an object where
no data is available. To a certain degree, algebraic surface
fitting does provide an extrapolation method for such areas,
but it does not provide much control over the quality of this
extrapolation. It would be highly desirable to impose certain
shape constraints, (e.g., smoothness or symmetry) on the fitting
process. Minimizing the enclosed volume is a first step in this
direction, but more research is clearly needed in this domain.
It should be noted that we mostly plan to use algebraic surface
fitting in off-line model construction rather than during on-line
object recognition (see [27] for an approach to recognition of
objects modeled by algebraic surfaces from monocular image
contours). In this case, acquiring range data over most of
an object’s surface should not present difficulties. It is also
worth mentioning that the presented parameterization places
no restriction on the genus of the corresponding curves and
surfaces, so some of the fitted surfaces have undesirable
handles (holes) or additional components. (See for example
Fig. 10.) Again, further research is required to characterize
parameterized families of polynomials that are both bounded
and of a particular genus.

From a more general point of view, a wide spectrum of
surface representations can be used for object recognition.
The number of shape parameters varies from very low (say,
three for quadric surfaces), to intermediate (five to eight for
superquadrics), and to very high (hundreds for polyhedra
with many faces or deformable surfaces). Surfaces with few
shape parameters are convenient for database storage and
indexing, but these provide only rough shape descriptions,
while surfaces with many shape parameters do not yield

efficient indexing mechanisms but capture very fine shape
detail. We believe that the niche of algebraic surfaces is
somewhere between superquadrics and deformable surfaces.
To be sure, superquadrics are always bounded and have genus
zero, and, like generalized cylinders, they have symmetries that
allow them to extrapolate data to the hidden side of an object
during fitting. On the other hand, the geometry of algebraic
surfaces is well understood from algebraic geometry, and since
they do not have preferred axes of symmetry, they do not force
structure onto objects that do not possess it and can be used
to model symmetrical objects. They also afford many more
degrees of freedom for shape description. As demonstrated
by the pepper and face examples, this is still not sufficient
for capturing very fine surface detail, which is not surprising.
We believe that single-surface models afford enough detail
for recognizing objects that are quite different (say, a pepper
and a face), but not two objects that are quite close (say, two
different faces). We plan to investigate part decomposition to
remedy this problem in the future. We also plan to address
the problem of directly constructing algebraic surface models
from sets of video images (see [39] for preliminary resulis).
Beyond modeling, we plan to further explore the application
of algebraic surfaces to object recognition and indexing.

APPENDIX

The lexicographical order of multiindexes is defined as
follows. If o and 3 are two multiindexes of the same size,
we say that « precedes 3 and write o < f, if for the first
index k such that oy, differs from 3 we have ay > fk. For
example, for multiindexes of size 2 in three variables, the
lexicographical order is

(2,0,0) < (1,1,0) < (1,0,1) <

(0,2,0) < (0,1,1) < (0,0,2) .
If « and (3 are multiindexes of different sizes, and the size of
« is less than the size of 3, we also say that «v precedes (3,

and write « < 3.
Proof (Lemma [): Apply the multinomial formula

(214 +2)t = Z (‘i—!,z“

|aj=d
to the case z; = X1Y1, -, Zn = LnY, to Obtain
Lty =Y Haty® = Xpg(«) X (y) -

la|=d

Proof (Lemma 2): Let 1 be a form of odd degree d
that is not identically zero, i.e., such that (x) # 0 for
a certain point x € R"™. By homogeneity it follows that
P(—z) = Pp((=1)z) = (=1)%p(x) = —p(x), because d is
odd. Thjerefore, 1 cannot be definite.

Proof (Lemma 4): Let v be a nonpositive definite form
of degree d, which is not identically zero. Due to homogeneity,
the set of level zero of % is clearly unbounded. Let A > 0. If ¢
is nonnegative definite, its set of level A is empty. Otherwise,
let p; and py be two nonzero points such that ¢(p;) = 0 and
1(pa) > 0. By homogeneity, we can assume that both points
are unit length. Now, for every # > (A/#(p2))'/¢, the form
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() restricted to the sphere of radius @ attains a value larger
than X at the point p, and the value zero at the point fp;. By
continuity of 1(z), there must exist a point p3 on the sphere
of radius # such that (p3) = A.

Proof (Lemma 5): Let f = 1 + g be a polynomial of
degree d, where ) is a positive definite form of degree d and
g is a polynomial of degree < d. We first show that there
exists g > 0 such that |g(z)| < plz)|¢~! for ||z|| > 1. For
this g is written as a sum of forms of different degrees (11):

d-1
= D axl@)
k=0

Clearly, u > |go| is necessary. For k > 0 and |z| >
1, we write gi(z) in vector form (13) and we apply the
Cauchy-Schwarz inequality, and then Lemma 1

lgx(z)] = ?Gfk]X[k](J;N < G Xp )
Izl | LT -

= G =
Gl T T llzl|*=

with the last inequality because ||z|| > 1. It is sufficient to take

Gt
= |g0 I+Z - [’“] (15)

to obtain the desired result. Now we prove that the set
{z : f(z) = A} is bounded, for every A € R. By including
A as part of the independent term of the polynomial g, it is
sufficient to consider the case A = 0. Since ¥(z) > Yun|z||%,
for ||z|| > 1 we have

0

f(=@)
Y(z) + g(x)
Own|2[|? — |4

Drans|z]| —

VIV I

or, equivalently,

I
el < —.

MIN
That is, if f(z) = 0, then ||z|| < max{1, u/"un}
Proof (Lemma 6): Let f = 1 + g be a polynomial of
degree d, where 9 is an indefinite form of degree d and g

is a polynomial of degree < d. If y is the constant (15), for
[z]] > 1 we have

f(z) 2 ¢(z)

'd—l

— lo(@)| > ¥(z) — plle]

and

f@) < P(z) +|g(z)| < v(z) + pllz]*~? .

Now, since 9 is indefinite, there exist two points p; and ps
such that ¥(p;) > 0 and ¥(p2) < 0. By the homogeneity of
1, we can also choose them of unit length |lp1|| = ||p2|| = 1.
If we apply the first inequality for z = fp; and 6 = ||z|| > 1,
we obtain

f(8p1) > ¢(0p1) — ul|fpr]|?~F = 6471 (89(p1) — 1)
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which is positive for § > p/9(p1). If we apply the second
inequality for 2 = fp, and § = ||z|| > 1, we obtain

f(Bp2) < (Bp2) + pfp2f*
= 0410y (p2) + 1)

which is negative for § > —u/¥(p2). Now, for § >
max{u/¥(p1), —i/¥(p2)}, the polynomial f(zx) restricted
to the sphere of radius 6 attains a positive value at one point
and a negative value at another point. By continuity of f(z),
there must exist a point p3 on the sphere of radius 6 such
that f(ps) = 0.

Proof (Lemma 7): First of all, note that the two forms
are linearly dependent if and only if the determinant

Yi(z) pa(x)
D1(y)  Pa(y)

is identically zero as a polynomial in two sets of variables,
z= (21, -,2,)" and y = (y1,---,Yn)". In particular, if the
two forms are linearly independent, there exist two points p;
and p; such that the determinant

< 0,

Yi(p1) P2(p1) £0
Y1(p2) 2(p2)
In this case, the linear system of two equations in g and uo,
{Mﬂfh (p1) + patpa(p1) = 1
pr1(p2) + popa(p2) = -1

has a unique solution, and the form pit1(z) + pothe(z) is
indefinite.

Proof (Lemma 8): Let p; and p, be two different points
on the unit sphere, and let A be an orthogonal matrix such
that Ap; = pa (for example, the Householder transformation
A = I — 2vvt/||v|)? with v = p; —p2 [21]). Since %
is invariant under orthogonal coordinate transformations, we
have 9(p2) = 9¥(Ap1) = ¥(p:). Since this is true for an
arbitrary pair of points, ¢ is constant on the unit sphere, in
particular ¥yax = Y, and so (from (14)) 1(z) = Yyl [|?
for every x € R™. If d is also odd, we also have (—z) =
—y(z) for every point, and so 1(z) =

Proof (Lemma 9): If we write the forms &; of (15) in
vector form &;(z) = Efk]iX (), we can also rewrite % as a
quadratic form in the vector of monomials Xj(z):

h

v=xpy (> EwiZhy) Xix

=1

= X[k] (:L')tMX[k]

where by construction M is a nonnegative definite symmetric
hi x hj matrix. Let N be a square root of M, i.e., any hg X hy
matrix such that NN* = M. For example, we can take it
lower triangular, using the Cholesky factorization of M. Now
we go backward in the previous equation. If A,---, Ay, are
the columns of N and Ai(z) = AjXpy(z), -, dn, () =
A}, Xixy(z), we have

w = X[tk]MX“:]
(hNtX[k]) (N*Xpg)

> (@)
=1
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For Lemma 10 we need to introduce some notation and
prove a few preliminary results. Let D = (9/9zy,---,
8/8z,)" be the vector of first-order partial derivatives. For ev-
ery form 1 of degree d there is a corresponding homogeneous
linear differential operator

YD) = S Ly, =
[nl=d

Vi Dy

where Dig) = X}x(D). Every homogeneous linear differential
operator of degree d can be written in this form in a unique
way, i.e., the vector space of linear differential operators of
order d is a vector space of the same dimension hg, and the
map 1(z) — (D) defines an isomorphism of vector spaces.
In fact, this is the dual space of the vector space of forms of
degree d, with respect to the inner product

($,9) = »(D)y
= D)y
= %‘I’nq’n
ln|t=d
This inner product is invariant with respect to the action of
the orthogonal group O(n) onto the space of forms of degree
d (see also [24], [42]).

If 9 is a form of degree d with coefficients {¥, : |a| = d},
since ¥, = D% for every multiindex a, by construction we
have ¥4 = Digj%. Also, for each pair of nonnegative integers
4 and k, such that d = j+k, we have U[; ;) = Dj; 5%, where
D[j‘k] = X[j,k](D)» and \If[]"k] is the h; x hy, matrix

Un = {2 Yarsilal =318/ = k} -
Furthermore,

Lemma 14: If v is a form of degree d and (j, k) is a
pair of nonnegative integers such that j + k = d, then
Dijj¢(z) = Wik Xix)(2)- Equivalently, for every multiindex
a of size j, we have

D = FVaypa”
181=k

Proof: For each multiindex n of size j, there is a one-
to-one correspondence between the following two sets:

{a:la|=da>n} = {B+n:|8l =k},

with ¢ > 7 meaning a3 > 71,

,0p > M. For every other
multiindex o of size d, we have :

prgey = {EF’ i a2 and a=ftn
0 otherwise
so that
Drite) = T AaDe) = 3 Foms’

or|=d

which, if written in matrix form, is the desired result.

Now we can prove Euler’s theorem.

Proof (Lemma 10): Since the form 1 is homogeneous of
degree d, we have the identity 6%)(z) = ¢(fz) in n + 1
variables 8, z1, - - -, T,,. Differentiating j times with respect to
6, and using the chain rule, we obtain

> LD"y(8z)z”

fnl=4

X[tj](z')D[j]w(aflI) .

(40 ()

Finally, we evaluate the previous expression at § = 1 and
substitute the vector of partial derivatives according to Lemma
14.

Proof (Lemma 11): Since Yz is symmetric and
nonsingular, \I/%k)k] is symmetric and positive definite, ie.,
YW Y > 0 for every nonzero vector Y. In particular,

Q)(x) = Xfy (@) ¥ gy X (2) > 0
for every z # 0.
Proof (Corollary 1): Lemma 11 and Lemma 5.

Now, we can rewrite the quadratic map @ in three equiv-
alent ways:

Q%) > A(Dy)?
ja|=Fk
||D[k]1/)||

= X{Vh n X -

(16)

Il

In order to establish the covariance property of the map Q
(Lemma 12), we first need to study the transformation rules
of vectors of monomials and vectors of coefficients of forms.
If #’ = Az is a nonsingular linear transformation, for every
form 1, the polynomial ¥(Az) is a form of the same degree.
In particular, every component of the vector X{q)(Az) can be
written in a unigue way as a linear combination of the elements
of X[y, or in matrix form, ie.,

Xig(Az) = AgXg(z)
where Ajg) is a nonsingular hg x hg matrix. The map A — Aq)
is a dth degree polynomial representation of the group GL(n),
and the matrix Ay is a dth degree representation matrix of
A. Furthermore,

Lemma 15: The map A — Apq) has the following proper-
ties.

1) It defines a faithful linear representation, a one-to-one
homomorphism of groups, of the group of nonsingular
nxn matrixes GL(n) into the group of nonsingular A4 x
hg matrixes GL(hg), i.e., for every pair of nonsingular
matrixes A and B, we have

a) The map preserves products (AB)q) = AqBla-

b) The map is one to one: If Ay = Big), then
A = B.

c) The matrix Ajq is nonsingular, and (Ag))~! =
(A Y -
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2) It preserves transposition, i.e., for every nonsingular
matrix A, we have (A%);q = (A}g)". In particular, if
A is symmetric, positive definite, or orthogonal, so is
A[d].

3) If A is lower triangular, so is A[d]. In particular, if A is
diagonal, so is Ajg).

4) The determinant of Ay is equal to [A]™, with m =
(n+d 1).
n

Proof: This is a well-known result in the theory of
representations of Lie groups [10]. For an elementary proof
see [38] or [44].

These properties of the representation matrixes play a cen-
tral role with respect to the transformation rules of coefficients
of forms.

Lemma 16 If 9(z) is a form of degree d and v'(z') =
Y(A™12"), then ‘I'fd] = A[;]tll’[d]. In particular, if A is
orthogonal, then lIJE q = Aiq¥(g.- Also, for each pair of
nonnegative integers j and k such that j + k = d, we have
Vi = Ag]'\ll[jyk]A[;]l. In particular, if A is orthogonal,
then \I}fj,k] = A[j]“IJ[j,k]Afk]-

Proof: If ' = Az is a coordinate transformation, the
partial derivatives are related by the chain rule

6171 Z axz Bz = ;Aﬁ%} ’
or, in matrix form, D' = (9/0z},---,0/0z!)t = A~tD.
Then,
Dy = Xw(D)
= Xp(A7'D) (17)
= (A_t)_[;c]X[k](D)
= A[k]D[k] )
and
Dy = Xw(D)X(y(D")
- AwlDlxguen)

= A[ 1Dkt A -

Finally, we have, from (17) and Lemma 14,

Uiy = Dig¥' (') = A Duarp(z) = A Viay
and if d = j + k, from (23),
\I’EJV k] D/J,klwl(z/)
= A (D 1)) Aje
= 45 }‘I’[J,k]A[ K] -

The first immediate consequence of these transformation
rules is that

Corollary: The representation of a form given by Euler’s
theorem is invariant under homogeneous linear transforma-
tions, i.e., with the same hypotheses of the previous lemma,

X" X (@) = X)X () .

Proof: Immediate from Lemma 16.
Finally, we can prove Lemma 12.

Proof (Lemma 12): With the same hypotheses of Lemma
16, apply Lemma 16 with j = k and then use equation 21 in
both members:

Il

2
Xy () (V) X (=)
X (I)\P[Qk,k] Xy ()
QY)(x) -

Q(Y)(=")

il

Il

We will now prove Lemma 13. Looking at the quadratic
map () as a smooth function of the coefficients of a form v of
degree d, the differential of () evaluated at % is a linear map

dQ() : R* — R |

and @ is one to one in a neighborhood of ¢ if and only if
dQ(+) is nonsingular. Let My, denote the matrix of dQ(v) in
the basis associated with the vector of monomials X4. That
is, if 8 = @fd]X[d] and £ = Efd]X[d] are two forms of degree
d such that dQ(¥)(f) = &, then Zpg = MyOy. My is
an hg X hg matrix whose components are homogeneous linear
functions of the coefficients of 1, the partial derivatives of the
quadratic functions (), (%) with respect to the coefficients ¥ 4
of 4. Furthermore, dQ(+) is nonsingular if and only if the
determinant |My| is nonzero. Since |M,,| is an homogeneous
polynomial of degree hq in the coefficients of ¢, for the
proof of Lemma 13 it is sufficient to show that |My]| is
not identically zero because in such a case, the set of forms
{¢ € R : |My| = 0} would be a variety of codimension
one, and for every form # not in this set the differential dQ(z))
would be nonsingular. Now, in order to prove that |M,,| is not
identically zero, we have only to show a particular form ) such
that |M,| # 0. The next two lemmas show how to compute
dQ(+) and M, and the third one shows how to construct a
form ¢ such that |My| # 0, completing the proof of Lemma
13.

Lemma 17: Let ¢ and & be forms of degree d = 2k. Then,

dQ(¥)(§)(z)
=2 ZZ Z m‘pahgcwsxeﬂ
la|=[8]=|v|=k

= 2trace(V kK (ke k) X e k) (2)) -

Proof: We first apply Lemma 14 to the expansion of Q
in (16) in order to obtain

Q) = Y (D)’

lo|=F

Z Z Z ﬁq’aﬁaqlwﬂywﬁﬁ

lal=18|=|v|=k

Then, the differential dQ(v)(§) is the coefficient of the linear
term of F(v¢ + t£) with respect to ¢

Z Z Z &#W(KI/0+BEQ+~, + EQ+B\IJQ+7)$3+7

lol=I=lI=k

=220 > amt

le|=8l=IvI=k

= B+
a+3=a+yT T
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Lemma 18: Let ¢ be a form of degree d = 2k, and let
Gy(z,y) = 2trace( X x () ¥ ik,0 Xk (T)) -

If 1 and v are multiindexes of size d = 2k, the (y, v)th element
of the matrix My is

M,{,(#’,,) = DgD;Gw(l‘,y)

In particular, My, is symmetric.

Proof: Let’s consider the form v, (z) = (y'z)¢/d!,
where y € R™. In this case, Wy = Xex)(y)". Consider
the vector y as a new vector of indeterminates, and we have
Gy(z,y) = dQ(¥)(¥y)(z). If © and v are multiindexes of
size d = 2k, the (u,v)th element of the matrix M, can be
obtained by differentiating G

My (uy = DDy, dQ(9)(¥)(z) = DEDyGy(z,y) -

Finally, since W[ ) is symmetric, so is G, and based on the
last equation, so is M.
Lemma 19: Let ¢ be a form of degree d = 2k. Then,
1) If W g is positive definite, so is My.
2) There exists a form ¢ of degree d = 2k such that Uy, )
is positive definite.

Proof: 1) The matrix M, defines a quadratic form on
R7

Qu(§) =

where £ = Ef d]X [¢ is another form of degree d. The matrix
M, is positive definite if and only if the quadratic form Qy
is positive definite, and it is not difficult to see that @y can
also be written in the following way:

Qu(&) = trace(Epk ) UikkSk k)
hi

ZUf‘I’[k,k]ui )

=1

where uq,---,up, are the columns of the matrix E[k‘k]. If ¢
is a nonzero form, at least one of these vectors is nonzero,
and since Wy, ) is positive definite, the sum on the right side
is positive.

2) Let p be a measure of compact support on R™. Fur-
thermore, let us require x to have nonempty interior, i.e., its
support contains an open set. The moments of degree d = 2k
of u define a form 1 with coefficient vector

Uy = /X[d](f)d#(m)'

In particular, the matrix of coefficients W[, 4 can also be
represented in integral form

wwm=l/xwmmwwy

which shows that ¥y x) is nonnegative definite. If Uy k) were
singular, then for certain nonzero form § of degree k, with
vector of coefficients Zi), we must have

0 =

Efd] MT,/)E[d] )

Zi Pk E ik ,
(S X)) du(z)
/&W@@%

Il

i.e., the form £ must be identically zero on the support of the
measure p. However, since the support of 1 contains an open
set, this is possible only if v is identically zero, which is a
contradiction. So, ¥ & is nonsingular.
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