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Abstract
The dual of a 2-manifold polygonal mesh without boundary is com-
monly defined as another mesh with the same topology (genus)
but different connectivity (vertex-face incidence), in which faces
and vertices occupy complementary locations and the position of
each dual vertex is computed as the center of mass (barycenter or
centroid) of the vertices that support the corresponding face. This
barycenter dual mesh operator is connectivity idempotent but not
geometrically idempotent for any choice of vertex positions, other
than constants. In this paper we construct a new resampling dual
mesh operator that is geometrically idempotent for the largest pos-
sible linear subspace of vertex positions. We look at the primal and
dual mesh connectivities as irregular sampling spaces, and at the
rules to determine dual vertex positions as the result of a resam-
pling process that minimizes signal loss. Our formulation, moti-
vated by the duality of Platonic solids, requires the solution of a
simple least-squares problem. We introduce a simple and efficient
iterative algorithm closely related to Laplacian smoothing, and with
the same computational cost. We also characterize the configura-
tions of vertex positions where signal loss does and does not occur
during dual mesh resampling, and the asymptotic behavior of itera-
tive dual mesh resampling in the general case. Finally, we describe
the close relation existing with discrete fairing and variational sub-
division, and define a new primal-dual interpolatory recursive sub-
division scheme.

CR Categories and Subject Descriptors:
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling - surface, solid, and object representations.

General Terms: Geometric Signal Processing, Mesh resampling,
Subdivision surfaces, Algorithms, Graphics.

1 Introduction
A polygonal mesh is defined by the association between the faces
and their sustaining vertices (connectivity), by the vertex positions
(geometry), and by optional colors, normals and texture coordinates
(properties). Properties can be bound to the vertices, faces, or cor-
ners of the mesh, but it is sufficient to consider meshes with vertex
positions and no other properties. This is so because: properties
bound per vertex can be treated in the same way as vertex posi-
tions, and properties bound per face or per corner can be regarded
as bound per vertex to a closely related mesh (dual mesh in the per
face case, Doo-Sabin [4] connectivity in the per corner case).
In general we look at vertex positions as signals defined on the

mesh connectivity. In section 2 we review some basic concepts
about meshes and mesh signals, and establish the notation for the
rest of the paper. The result of applying the barycenter dual mesh
operator to a manifold polygonal mesh without boundary (the pri-
mal mesh) is another mesh with the same topology but different
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Figure 1: Barycenter dual mesh operator (BD) vs. resampling dual
mesh operator (RD). (a): primal mesh; (b) dual mesh; (c) D ap-
plied to primal mesh has same connectivity but different geometry;
(d) D applied to primal mesh displays evident shrinkage; (e): re-
sampling dual mesh; (f): primal geometry is recovered when RD
is applied to primal mesh; (g): RD applied to primal mesh also
recovers primal geometry. In general, some signal loss may occur
when RD is applied to the primal mesh, but the sequence RD
converges fast.
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Figure 2: A: an edge connects two vertices and two incident faces.
B: a dual mesh face corresponds to cycle in the dual graph around
a primal vertex.

connectivity (the barycenter dual mesh), in which faces and vertices
occupy complementary locations, and the centers of mass (barycen-
ters or centroids) of the vertices supporting the primal faces define
the dual vertex positions. In section 3 we discuss this classical con-
struction in more detail. For example, a primal mesh is shown in
figure 1-(a), and the result of applying the dual mesh operator to it
is shown in figure 1-(b). We claim that this operator is not prop-
erly named because the term dual is reserved in Mathematics to
operators that are equal to the identity when squared (idempotent
operators); and when the square of the barycenter dual mesh op-
erator is applied to a mesh, the original connectivity is recovered
but the vertex positions are not. In fact, the linear operator defined
by the square of the barycenter dual mesh operator on the primal
vertex positions is a second order smoothing operator that displays
the same kind of shrinkage behavior as Laplacian smoothing [13],
always producing shrinkage when applied to non-constant vertex
positions. For example, figures 1-(c) and 1-(d) show the result of
applying the square and the fourth power of the dual mesh operator
to the primal mesh of figure 1-(a), respectively.
In this paper we look at the construction of the dual vertex po-

sitions as a resampling process, where the primal vertex positions,
regarded as signals defined on the primal mesh connectivity, are
linearly resampled (transferred) according to the dual mesh connec-
tivity. The problem is how to define resampling rules as a function
of the connectivity so that loss of information is minimized, i.e., so
that in general the original signal is recovered when the same pro-
cess is applied to the resampled signal (dual vertex positions) on the
dual mesh connectivity. Note that this is not the case when the dual
vertex positions are defined as the barycenters of the faces. Here
the result of resampling back from the dual to the primal sampling
space always produces loss of signal, unless the signal is constant
(zero frequency).
In section 4 we show that the dual vertex positions of the Pla-

tonic solids [17] circumscribed by a common sphere can also be
defined as the solution of a least-squares problem with a quadratic
energy function linking primal and dual vertex positions, and that
this energy function is well defined for any manifold polygonal
mesh without boundary. In section 5 we derive explicit expressions
for the new resampling dual vertex positions as linear functions of
the primal vertex positions. In section 6 we rewrite the formula
for the resampling dual vertex positions as a function of the primal
and dual Laplacian operators, and we show that the linear opera-
tor defined by the square of the resampling dual mesh operator is
a smoothing operator that prevents shrinkage as in Taubin’s
smoothing algorithm [13]. The new expression for the resampling
dual vertex positions with the Laplacian operator leads to an effi-
cient algorithm, described in section 7, to compute the resampling
dual vertex positions. Even though this algorithm, which can be

Figure 3: Platonic solids: tetrahedron, cube, octahedron, icosahe-
dron, and dodecahedron.

implemented as a minor modification of the Laplacian smoothing
algorithm, converges very fast, we exploit the relation to Laplacian
smoothing even further, and define approximate algorithms that run
in a fraction of the time in a pre-determined number of operations.
In the classical problem of uniform sampling rate conversion in

signal processing [2, 16], under conditions determined by Shanon’s
sampling theorem, when the sampling rate is reduced (fewer faces
than vertices in the primal mesh) the frequency content of the signal
determines whether loss of information (due to aliasing) occurs or
not, and when the sampling rate is increased (more faces than ver-
tices in the primal mesh), no loss of information occurs because the
resampled signal is of low frequency. The situation here is more
complex, due to lack of regularity, but in section 8 we establish
the conditions under which loss of information occurs and is pre-
vented, and study the asymptotic behavior of iterative dual mesh
resampling, in fact defining the space of low frequency signals, i.e.
the largest linear subspace of signals that can be resampled with
no loss of information. For example, figures 1-(e), 1-(f), and 1-(g),
shows the result of applying the first, second, and fourth powers of
our new resampling dual mesh operator to the primal mesh of fig-
ure 1-(a). Note that the second and fourth powers (and any even
power) recover the primal mesh because the conditions for lossless
dual mesh resampling are satisfied.
In addition to Taubin’s low-pass filter algorithms [13, 15], a num-

ber of enhancements have been introduced in recent years to Lapla-
cian smoothing to try to overcome some of its limitations, such as
prevention of tangential drift [7, 3], implicit fairing for aggressive
smoothing [3], the variational approach for interpolatory fairing
[11], and the explicit incorporation of normals in the smoothing
process for better control in shape design [18]. The algorithms in-
troduced in this paper have potential applications in these areas. We
do not explore these applications here, but we in section 10 we de-
fine a new interpolatory recursive subdivision scheme based on the
primal-dual mesh operator, and we study the relation with varia-
tional fairing in section 12. Finally, we present our conclusions and
plans for future work in section 13.

2 Meshes and Signals
The connectivity of a polygonal mesh is defined by the incidence
relationships existing among its vertices, edges, and faces.
We also use the symbols , , and to denote the sets of vertices,
edges, and faces of . A boundary edge of a polygonal mesh has
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Figure 4: Platonic duals: icosahedron and dodecahedron.

exactly one incident face, a regular edge has two incident faces, and
a singular edge has three or more incident faces. The dual graph of
a polygonal mesh is the graph defined by the mesh faces as graph
vertices, and the regular mesh edges as graph edges.
When we refer to a mesh in this paper, we mean a 2-manifold

polygonal mesh without boundary. No other types of polygonal
meshes, such as meshes with boundary or non-manifold meshes,
will be considered here. Extensions of the techniques introduced in
this paper to meshes with boundary and non-manifold are possible,
but will be done elsewhere.
So, our meshes have no isolated vertices, i.e., every vertex is the

corner of at least one face. Although the methods described in this
paper work for meshes with multiple connected components, it is
sufficient to consider connected meshes, because all the operations
can be decomposed into independent operations on the connected
components. The concepts of orientation and orientability play no
role in this paper, and will be ignored as well. In our meshes every
edge is regular, and the subgraph of the dual graph defined by all
the faces incident to each mesh vertex form a closed loop, or cycle
of faces. Figure 2 illustrates these concepts. The connectivity of
the dual mesh of is defined by the primal faces as dual vertices,
and these dual graph loops as dual faces. Since each primal edge
connects two vertices and has two incident faces, we identify primal
and dual edges, and refer to them as just edges. Figures 1-(a) and
1-(b) show a mesh, and its dual.
We consider vertex, edge, and face signals defined on the ver-

tices, edges, and faces of a mesh, i.e., on the different connectivity
elements. These signals define vector spaces. For example, primal
vertex positions are three-dimensional vertex signals, and dual ver-
tex positions are three-dimensional face signals (vertex signals on
the dual mesh). The role of the edge signals will become evident
in subsequent sections. Since all the computations in this paper
are linear and can be performed on each vertex coordinate inde-
pendently, it is sufficient to consider one-dimensional signals. We
arrange these one-dimensional signals as column vectors , ,
and , of dimension , , and , respectively. The element of

corresponding to a vertex is denoted , the element
corresponding to an edge is denoted , and the element of
corresponding to a face is denoted .

3 The Barycenter Dual Mesh

The quad-edge data structure [6] can be used to efficiently repre-
sent and traverse a mesh, and in particular to construct the connec-
tivity of the dual mesh. The faces of the dual mesh can be recon-
structed by cycling around each vertex of the primal mesh using
the information stored in the quad-edge data structure. In the dual
mesh construction the dual vertex signal corresponding to a face

with corners is computed as the average of the

primal vertex signals corresponding to the corners of the face

We can also write this assignment in vector form as

(1)

where is the vertex-face incident matrix normalized so
that the sum of each row is equal to one. If this construction is
repeated on the dual mesh, we obtain a mesh with the same con-
nectivity as the primal mesh, but with vertex positions

where the matrix is the face-vertex incident matrix nor-
malized so that the sum of each row is equal to one. The matrix

is not symmetric, but is composed of non-negative ele-
ments, and its rows add up to one. It defines a second order smooth-
ing operator closely related to Laplacian smoothing [13].
If we look at the set of vertex signals such that ,

i.e., the invariant subspace of associated with the eigen-
value , we generally end up with a subspace spanned by the con-
stant vector . Our approach,described in the next
three sections, is to construct new matrices and ,
as functions of the connectivity, to replace the matrix in the
construction of dual vertex signal values, in such a way that the di-
mension of the invariant subspace of associated with
the eigenvalue is maximized.

4 Platonic Solids
Figure 3 shows the five Platonic solids: the tetrahedron, the cube,
the octahedron, the icosahedron, and the dodecahedron. All of them
are circumscribed by a sphere, say of unit radius. In terms of con-
nectivity, the tetrahedron is dual of itself, and both the cube and the
octahedron, and the icosahedron and the dodecahedron, are dual of
each other. Because of the symmetries, if we construct the dual
mesh of each of these meshes as described in section 3, with the
dual vertex positions at the barycenters of the primal faces, we end
up with the corresponding dual platonic solids, but circumscribed
by spheres of smaller radii. This can be solved by adjusting the
scale, moving the face positions away from the center of the pri-
mal mesh along the corresponding radial directions until the dual
vertex positions are circumscribed by the unit sphere. This pro-
cedure solves the problem for the Platonic solids, but it does not
work for other more general meshes. However, the construction
has the following property [17], that can be observed in figure 4 for
the case of the icosahedron and the dodecahedron: for each edge

connecting two vertices and two faces, the
segments joining the corresponding vertex positions and face posi-
tions intersect at their midpoints, i.e.,

This means that the construction of the dual vertex positions of the
Platonic solids can be described as the minimization of the follow-
ing energy function

(2)

with respect to with fixed, the sum taken over all the edges
of the mesh. The value attained at the minimum is zero. Note
that the vertex positions of the double dual mesh are obtained by
minimizing the same energy function with respect to with
fixed. In addition, this energy function is defined for every manifold
polygonal mesh without boundary.
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PrimalLaplacian
# accumulate

;
for

;
;

end;
# normalize
for

;
end;
# return

return ;

DualLaplacian
# accumulate

;
for

;
;

end;
# normalize
for

;
end;
# return

return ;

Figure 5: Algorithms to evaluate the primal ( ) and dual
( ) Laplacian operators by traversing the mesh edges

5 The Resampling Dual Mesh
Equation 2 can be written in matrix form for any mesh as follows

(3)

where and are the edge-vertex and edge-face incidence
matrices without normalization. In general, these are full-rank ma-
trices. Since equation 3 is quadratic, the minimizer of is
the solution of the linear system

(4)

which is obtained by differentiating with respect to , or equiv-
alently

with
(5)

And due to symmetry, the minimizer of can be written as

with
(6)

The matrix in equations 5 can also be written as

where

is the pseudo-inverse of the matrix . A similar expression can
be written for the matrix of equation 6.

A B

C D

E F

Figure 6: Resampling with rank-deficient . (A) primal
mesh (B) resampling dual mesh, (C) second power of resampling
dual mesh, (D) third power, (E) fourth power ( ) , and (F) sixth
power ( ).

6 Relation to Laplacian Smoothing
In this section we establish the relation between dual resampling
formula and Laplacian smoothing. In section 7
we use this formulation to define a simple and efficient algorithm to
evaluate the resampling dual vertex signals as a minor modification
of the Laplacian smoothing algorithm.
In its simplest form, the primal Laplacian operator is defined for

a vector of vertex positions as

where is the set of vertices connected to vertex by an edge,
the weight is equal to , and is the number of ele-
ments in the set . If we organize the weights as a matrix , we
can write the Laplacian operator in matrix form as follows

where has eigenvalues in , and is the iden-
tity matrix in the space of vertex signals [13]. A similar expression
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can be written for the dual Laplacian operator . Pseudocode
implementations of the algorithms to evaluate the primal and dual
laplacian operators are described in figure 3.
Note that the diagonal element of the matrix corre-

sponding to a vertex is equal to the number of vertices con-
nected to through an edge, and if we organize these numbers as a
diagonal matrix , we have

with , and also

where is the matrix introduced in section 3 ( normalized
so that the sum of each row is equal to one). This allows us to
rewrite the equation (dual of 4) used to compute the double dual
vertex positions as a function of the face positions, as follows

(7)

With a similar derivation, we can rewrite equation 4, used to
compute the face positions as a function of the primal vertex posi-
tions, as follows

(8)

where is the matrix of the Laplacian operator defined on the
dual mesh.
Note that in equation 8, the face positions are computed by ap-

plying implicit smoothing [3] to the barycenters of the faces with
negative time step . This process is not a smoother, but
actually enhances high frequencies. The behavior of this process
is closely related to Taubin’s non-shrinking smoothing algo-
rithm [13], where a true low pass-filter is constructed by two steps
of Laplacian smoothing with positive (high frequency attenuating)
and negative (high frequency enhancing) scaling factors. Here the
computation of face barycenters has a high frequency attenuating
effect, and the implicit smoother with negative time step has a high
frequency enhancing effect:

The final result, as in Taubin’s algorithm, is a low-pass filter ef-
fect without shrinkage, while the data is transferred from the primal
to the dual mesh.

7 Algorithm
To compute the dual vertex signals as a function
of the primal vertex signals we solve the linear system of equation
8 using a simple iterative method, which, as we will see in this sec-
tion, is a minor modification of the Laplacian smoothing algorithm.
Iterative methods are used to solve systems of linear equations

such as
(9)

where the non-singular square matrix is large and sparse, and
and are vectors of the same dimension [5]. Several popular

iterative solvers, such as Jacobi and Gauss-Seidel, are based on the
following general structure. By decomposing the matrix as the
sum of two square matrices , such that is easy to
invert and the spectral radius of the matrix is less
than one, the problem is reduced to the solution of the equivalent
system

PrimalDualSmoothing steps
for steps

;
for

DualLaplacian ;
;

end;
;

for
PrimalLaplacian ;

;
end;

;
end;

return ;

Figure 7: Primal-dual smoothing algorithm. Pseudocode for the
primal and dual Laplacian operators is described in figure 3.

with . The following simple algorithm

(10)

defines a sequence of estimates that converges
to the solution of the original system of equations 9, because the
series

converges absolutely and uniformly for , and

The rate of convergence is determined by the spectral radius of
: if for all , and , then

For example, if , the relative error is less than after
ten iterations, and the estimates have about six correct digits after
twenty iterations.
To solve equation 8 we set , , and

. Although the spectral radius is bound above by (be-
cause the eigenvalues are in the interval ), in typical meshes
this upper bound is closer to , and we observe in practice con-
vergence to an error of less than after ten iterations.
Note that, if we replace by in the iteration rule described

in equation 10 we obtain

or equivalently

which corresponds to steps of the Laplacian smoothing with pa-
rameter . The main difference is that in Laplacian smooth-
ing the number of iterations is specified in advance, while in our
new algorithm it depends on an error criterion. As an alternative,
we can use the new algorithm with both an error tolerance and a
maximum number of iterations, and stop as soon as either stopping
criterion is satisfied. In our experience, a maximum number of iter-
ations of and error tolerance of produces excellent results.

5
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Figure 8: Primal-Dual smoothing vs. Laplacian smoothing. (A)
a mesh. The result of applying (B) 12 Laplacian smoothing steps
with parameter , and (C) 12 steps of Taubin’s smooth-
ing algorithm with parameters and .
The result of applying primal-dual smoothing steps with parame-
ters : (D) 6 steps with , (E) 3 steps with , and
(F) 1 step with . The computational cost is about the same in
all cases.

8 Analysis of Dual Mesh Resampling
In this section, and based on simple concepts from Linear Alge-
bra, we establish necessary and sufficient conditions under which
no loss of information occurs when primal vertex signals are re-
sampled, and describe the general behavior of the dual resampling
process.
The matrix defines a linear mapping from the space of ver-

tex signals into the space of edge signals . Since
normally meshes have more edges than vertices and the matrix
is full-rank, the image of this mapping is a subspace of dimen-
sions in the space of edge signals. Let be the orthogonal
complement of in the space of edge signals, i.e., is the
full space of edge signals. Every edge signal can be decomposed
in a unique way as a sum of two edge signals; a first one
belonging to and a second one belonging to

A B

C D

E F

Figure 9: The Primal-Dual mesh. (A) a coarse mesh, (B) the faces
are triangulated by connecting the new face vertices (red) to the
original vertices (blue), (C) the primal-dual connectivity is obtained
by removing the original edges, (D) the Catmull-Clark connectiv-
ity is obtained after a second primal-dual refinement step. (E) the
primal connectivity can be recovered from the primal-dual connec-
tivity by inserting the primal diagonals and removing the dual ver-
tices. (F) the dual connectivity can be recovered by inserting the
dual diagonals and removing the primal vertices.

where , and is the identity in the space of edge
signals. The pseudo-inverse of the matrix defines a linear
mapping from the space of edge signals into the space of vertex
signals that recovers the vertex signal part of any
edge signal

because (with the identity of vertex signals).
The matrix is a projector ( ) in the space of edge
signals which has as its invariant subspace associated with the
eigenvalue and as its invariant subspace associated with the
eigenvalue . The matrix also defines a linear mapping from
the space of face signals into the space of edges signals

, orthogonal subspaces and of edge signals, and a
projector .
The intersection of the subspaces and

6



Pacific Graphics 2001, Tokyo, Japan, October 2001

plays a key role in determining whether signal loss occurs or not in
the dual mesh resampling process. We call a vertex signal dual
resamplable if , i.e., if the dual resampling process
produces no loss of information. These signals correspond to edge
signals that belong to . To prove this statement,
let be the matrix corresponding to the square
of the dual mesh resampling process, and let be a vertex signal.
If the corresponding edge signal belongs to , then
there is a face signal so that . It follows that

Note that since the subspaces and are spanned by the
columns of the matrices and , the dimension of is equal
to the rank of the matrix . We have three particular cases:
1) the dimension of is ( is a subspace of ); 2) the dimen-
sion of is ( is a subspace of ); and 3) the dimension of
is strictly less than the minimum of and . In the first case (sam-
pling rate increase), no loss of information occurs for any vertex
signal, i.e., . In the second case (sampling rate decrease)
the process is idempotent, i.e., . This is so because since

we have , and so

Neither one of these first two cases are very common. Most typi-
cally we encounter the third case, in which iterative dual mesh re-
sampling produces a sequence of vertex signals that quickly con-
verges to a resamplable one:

Proposition 1 (lossy resampling) For any vertex signal the se-
quence converges to a dual resamplable signal.

PROOF 1 : Let us define the following sequence of vertex signals

Clearly, if the sequence converges, the limit vector satisfies the
desired property . To show convergence, it is suffi-
cient to prove that the sequence converges. Our argument
is based on an eigenvalue analysis. Note that

and since is a projector, and , we have

Now, the matrix is symmetric and non-negative definite.
Since and are projectors, the eigenvalues of are
between zero and one, with eigenvalue corresponding to eigen-
vectors in , and eigenvalues strictly less than corresponding to
eigenvectors orthogonal to . Let be the largest of the eigenval-
ues less than , which is equal to the cosine of the angle between
the subspaces and . While the projection of
onto stays constant, the projection onto the orthogonal subspace
to converges to zero at least as fast as .
Figure 6 illustrates this last case. Numerical algorithms to de-

termine the rank of the matrix can be based on the QR
decomposition for small meshes, and the SVD algorithm for large
meshes [5]. Computing the smallest singular value would be suf-
ficient to know whether we are in cases 1 or 2, or 3. Further work
is needed to relate local combinatorial relations between vertices,
faces, and edges to the rank of the matrix .

A B

C D

Figure 10: The primal-dual mesh operator applied recursively to a
coarse mesh (A), once (B), twice (C), and four times (D). These
subdivision meshes are fair in the variational sense.

9 Primal-Dual Smoothing
If we use the new algorithm to compute the dual vertex positions
by specifying just a maximum number of iterations, and then ap-
ply the same algorithm to recompute primal vertex positions as a
function of the dual vertex positions, we obtain a new family of
non-shrinking smoothing operators for the primal vertex signals

described by the following steps

and illustrated in pseudocode in figure 7.
Since for large we have , with

which satisfies , as increases, these oper-
ators produce less smoothing. We also have the freedom of playing
with the parameter . Figure 8 shows some results compared to
Laplacian and Taubin’s smoothing algorithms.
Note that to implement the primal-dual smoothing algorithm we

do not need to construct the connectivity of the dual mesh explicitly.
The two steps are based on recursively evaluating products of the
Laplacian matrices and by vectors of dimensions and ,
and by accumulating partial results in temporary arrays of the same
dimensions. But both matrix vector products can be accumulated
by traversing the same list of mesh edges.

10 The Primal-Dual Mesh
As noted by Kobbelt [10], the operator that transforms the connec-
tivity of a mesh into its Catmull-Clark connectivity [1] has a square
root. The result of applying this square root operator to the con-
nectivity of a mesh has the vertices and faces of the original mesh
as vertices, the edges of the original face as quadrilateral faces, and
the vertex-face incident pairs as edges. The quad-edge data struc-
ture [6] can be used to operate on the primal-dual mesh. Figure 9

7
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A B

C D

Figure 11: Non-shrinking Doo-Sabin subdivision operator is the
composition of the square of the primal-dual operator followed by
the resampling dual operator. (A) coarse mesh, (B) coarse mesh
after three shrinking Doo-Sabin refinement steps, (C) coarse mesh
after three non-shrinking Doo-Sabin refinement steps, (D) superpo-
sition of (A) and (C).

illustrates the construction, and how to recover the connectivity of
the original mesh and its dual from the resulting mesh connectivity.
If we add to this connectivity refinement operator our algorithm

to compute the resampling dual vertex positions, we obtain an inter-
polatory refinement mesh operator. Because of the symmetric role
that primal and dual vertices play in this construction, we prefer to
call it the primal-dual mesh operator. Note that this operator has
two inverses that can be used to recover either the original mesh, or
the resampling dual mesh. Also, since the scheme is interpolatory,
and the original vertices are a subset of the vertices of the resulting
mesh, there is no loss of information.
The primal-dual mesh operator defines a linear operator that

maps vertex signals on the primal mesh to vertex signals on the
primal-dual mesh

Since the matrix that defines this linear operator is full-rank, the
image is a subspace of dimension . And this is true even if the
primal-dual mesh operator is applied iteratively several times to re-
fine the mesh more and more. We will see in section 12 that these
meshes are smooth in the variational sense. Figure 10 shows an ex-
ample of applying the primal-dual mesh operator recursively sev-
eral times to a coarse mesh as a mesh design tool.

11 Non-Shrinking Doo-Sabin
Since the Doo-Sabin connectivity of a mesh is the dual of the
Catmull-Clark connectivity, and this is the square of the primal-
dual connectivity, we can combine the resampling dual and primal-
dual mesh operators to produce a non-shrinking version of the Doo-
Sabin [4] subdivision scheme: apply primal-dual twice followed by

A B

C D

Figure 12: Surface designed by combining resampling-dual (RD)
and primal-dual (PD) mesh operators. (A) coarse mesh, the result
of applying (B) , (C) , and (D)

to the coarse mesh.

resampling dual. An example is shown in figure 11. This Doo-
Sabin resampling operator is also an example of a resampling pro-
cess to a different mesh with the same topology. More general cases
will be studied in a subsequent paper.
Another application for other combinations of these two opera-

tors is as a design tool in an interactive modeling environment. One
example of a surface designed in this way is shown in figure 12.

12 Relation to Variational Fairing
In this section we discuss the close relation existing between
our primal-dual operator and the discrete fairing approach, which
shows that the surfaces produced by recursive primal-dual subdivi-
sion are smooth in the variational sense. Further work is required
to understand the local asymptotic behavior of primal-dual subdivi-
sion.
First of all, we modify the energy function of equa-

tion 3 by introducing a symmetric positive definite matrix
as follows

(11)

where is the edge signal vector

The qualitative behavior of the primal-dual subdivision process for
different values of diagonally dominating is very similar.
The Laplacian operator on the primal-dual mesh can be written

in block matrix form as follows

where and are the identity matrices in the spaces of vertex
and faces signals, respectively, and the matrices and

8
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are the face-vertex and vertex-face incident matrices normalized so
that each row adds up to one introduced in section 3.
In the Discrete Fairing approach [11], the smoothness of a mesh

is increased by minimizing an energy function such as the square
of the Laplacian

with some vertices fixed, or other linear constraints. In our case we
would minimize this expression with the primal vertex positions

fixed to obtain the dual vertex positions , or with the dual
vertex positions fixed to obtain the primal vertex positions.
If we replace the matrices and by the new matrices

and defined in section 5, we obtain a new resam-
pling Laplacian operator which behaves in a very similar way

But if we expand the square of the resampling Laplacian operator
we obtain

or equivalently

with

13 Conclusions and Future Work
In this paper we described a solution to the problem of shrinkage in
the construction of the dual mesh, introduced efficient algorithms to
solve the problem, and shown some applications. Through a signal
processing resampling point of view, we established necessary and
sufficient conditions under which no loss of information occurs, and
analyzed the asymptotic behavior of iterative dual mesh resampling.
We regard the results introduced in this paper as a first step to-

ward a general theory for general mesh resampling, and comple-
mentary to existing approaches to remeshing [12], recursive subdi-
vision [10, 20, 19], and 3D geometry compression [9, 8, 14]. We
plan to explore these applications in subsequent papers.
In this paper we restricted our meshes to oriented manifold

meshes without boundary. We also plan to extend the formulation
and algorithms to meshes with boundary and non-singular edges. In
this extended formulation we will have explicit parameters (bound-
ary conditions), such as normals, associated with boundary and sin-
gular edges, that could be used very effectively in an interactive
free-form shape design environment.
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[20] D. Zorin and P. Schröder. A Unified Framework for Pri-
mal/Dual Quadrilateral Subdivision Schemes. Computer
Aided Geometric Design, 2001. (to appear).

9

View publication stats

https://www.researchgate.net/publication/3922432

