
1 Introduction

Detecting and
reconstructing subdivision
connectivity

Gabriel Taubin

California Institute of Technology, Department of
Electrical Engineering, MS-136-93, Pasadena,
CA 91125, USA
E-mail: taubin@caltech.edu

Published online: 3 July 2002
c© Springer-Verlag 2002

In this paper we introduce fast and efficient inverse
subdivision algorithms, with linear time and space
complexity, to detect and reconstruct uniform Loop,
Catmull–Clark, and Doo–Sabin subdivision structure
in irregular triangular, quadrilateral, and polygonal
meshes. We consider two main applications for these
algorithms. The first one is to enable interactive
modeling systems that support uniform subdivision
surfaces to use popular interchange file formats which
do not preserve the subdivision structure, such as
VRML, without loss of information. The second ap-
plication is to improve the compression efficiency of
existing lossless connectivity compression schemes,
by optimally compressing meshes with Loop sub-
division connectivity. Our Loop inverse subdivision
algorithm is based on global connectivity properties
of the covering mesh, a concept motivated by the
covering surface from Algebraic Topology. Although
the same approach can be used for other subdivi-
sion schemes, such as Catmull–Clark, we present
a Catmull–Clark inverse subdivision algorithm based
on a much simpler graph-coloring algorithm and
a Doo–Sabin inverse subdivision algorithm based on
properties of the dual mesh. Straightforward exten-
sions of these approaches to other popular uniform
subdivision schemes are also discussed.
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Subdivision surfaces are becoming popular multi-
resolution representations in modeling and anima-
tion (Zorin et al. 1997; Zorin and Schröder 2000).
The most popular uniform recursive subdivision
schemes are due to Loop (1987), Catmull and Clark
(1978), and Doo and Sabin (1978). For example
Fig. 1b shows the result of applying Loop’s triangle
quadrisection scheme (Loop 1987) to the triangular
mesh shown in Fig. 1a.
Since the most popular interchange file formats, such
as VRML (The Virtual Reality Modeling Language
1997), do not preserve the subdivision structure,
a problem exists if the model is saved using one
of these file formats and further editing is required
at a later time. Alternatively, a proprietary file for-
mat with support for subdivision surfaces can be
used, but it limits the distribution of the content. The
methods introduced in this paper to detect uniform
subdivision connectivity and to reconstruct the sub-
division structure solve this problem.
Another application area for the algorithms intro-
duced in this paper is to improve the efficiency of
lossless connectivity compression schemes. Most
3D geometry compression techniques for polygo-
nal meshes preserve the connectivity information
without loss (Taubin and Rossignac 2000). Lossless
connectivity compression schemes are important, for
example, when a mesh is carefully constructed by an
artist using a modeling or animation package. In this
framework, changing the connectivity may destroy
important features such as crease lines.
Uniform subdivision schemes can be regarded as op-
timal progressive connectivity compression schemes,
because the cost of encoding each subdivision step
is constant (Taubin et al. 1998). Unfortunately, al-
though many commercial modeling and animation
packages use subdivision surfaces as one of their
main surface representation primitives (Zorin and
Schröder 2000), current connectivity compression
schemes (Taubin and Rossignac 2000) do not de-
tect subdivision connectivity. As a result, the cost of
encoding each uniform subdivision step is normally
a function of the size of the coarse mesh.
For example, Table 1 shows the cost of encoding
the connectivity of a tetrahedron and eight meshes
constructed by recursive triangle quadrisection with
the MPEG-4 3D Mesh coder (Information Technol-
ogy 1999) in single-resolution mode (Taubin and
Rossignac 1998). Note that the total cost of encoding
a quadrisected mesh is about twice the cost of en-
coding the original mesh – B(4T )≈ 2B(T ) – while

The Visual Computer (2002) 18:357–367
Digital Object Identifier (DOI) 10.1007/s003710100152



358 G. Taubin: Detecting and reconstructing subdivision connectivity

a b c d

Fig. 1a–d. Loop inverse subdivision algorithm. a Coarse mesh (V = 711 F = 1418 V − E + F = 2). b Quadrisected mesh
(V = 2838 F = 5672 V − E + F = 2). The covering mesh of this quadrisected mesh has two connected components. c First
component of covering mesh (V = 2127 F = 4254 V − E + F = −1368). Note the large number of holes and face overlap.
d Second component of covering mesh equivalent to coarse mesh

Table 1. Cost of encoding the connectivity of a tetrahedron and
eight meshes constructed by recursive triangle quadrisection
with the MPEG-4 3D Mesh coder. T : number of mesh trian-
gles; B: cost to encode connectivity in bits; B/T : average cost
of encoding connectivity, in bits per triangle

T B B/T T B B/T

4 64 16.00 4096 1704 0.42
16 96 6.00 16 384 3744 0.23
64 192 3.00 65 536 8192 0.13

256 384 1.50 262 144 18 248 0.07
1024 784 0.77

if optimally encoded, the incremental cost should be
constant – B(4T ) = B(T )+ O(1) – corresponding
to the number of bits used to represent the instruc-
tion specifying the subdivision operation in the com-
pressed bitstream. Other single resolution schemes
(Touma and Gotsman 1998) are more efficient at
compressing these quasi-regular meshes, but still the
incremental cost of encoding a quadrisected mesh is
a function of the size of the coarse mesh.
Lossy connectivity compression schemes can be
used in some cases, such as when a 3D polygo-
nal mesh is large and generated by over-sampling
a relatively smooth surface with simple topology,

such as those produced by 3D scanning systems.
Simplification algorithms (Heckbert 1997) can be
regarded as lossy connectivity compression tech-
niques, but another very efficient scheme to com-
press this kind of data is based on remeshing, i.e., on
approximating the geometry of the given polygonal
mesh by a semi-regular subdivision surface within
certain tolerance, and using wavelet-based coding
techniques to compress the geometry information
(Khodakovsky et al. 2000; Guskov et al. 2000).
Remeshing algorithms do not replace lossless con-
nectivity compression schemes, because they do not
produce good compression results when the topol-
ogy is not simple and replacing the connectivity of
the mesh is not always acceptable. The algorithms
introduced in this paper can be used to compress
the connectivity of these remeshed meshes in the
case where they were saved without the subdivision
structure.
The methods introduced in this paper, to detect uni-
form subdivision connectivity and to reconstruct
the subdivision structure, can be used to minimize
the cost of encoding the connectivity information
of a fine mesh with uniform subdivision connectiv-
ity, by representing the connectivity information as
a coarse mesh followed by one or more uniform sub-
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division steps, rather than as a fine mesh compressed
with a single resolution or progressive scheme.
The paper is organized as follows: In Sect. 2 we
introduce some definitions and nomenclature about
polygonal meshes, which can be skipped on a first
reading. In Sect. 3 we describe our Loop inverse
subdivision algorithm, in Sect. 4 the Catmull–Clark
algorithm, and in Sect. 5 the Doo–Sabin algorithm.
Finally, we present our conclusions in Sect. 6.

2 Polygonal meshes

In this section we introduce some definitions, nota-
tion, and facts about polygonal meshes that we will
need in subsequent sections to formulate our main
results more precisely. It can be skipped on a first
reading.
A polygonal mesh is defined by the position of the
vertices (geometry), by the association between each
face and its sustaining vertices (connectivity); and
by optional colors, normals and texture coordinates
(properties). The Loop inverse subdivision algo-
rithm applies to the connectivity of triangular meshes
(T -meshes). The Catmull–Clark inverse subdivision
algorithm applies to the connectivity of quadrilat-
eral meshes (Q-meshes), and the Doo–Sabin inverse
subdivision algorithm to the connectivity of general
polygonal meshes (P-meshes).
Connectivity. The connectivity of a polygonal mesh,
M, is defined by the incidence relationships exist-
ing among its V vertices, E edges, and F faces.
Since in this paper we only operate on the con-
nectivity, when we refer to a mesh, we will mean
the connectivity of a polygonal mesh. We will also
use the symbols V , E, and F to denote the sets
of vertices, edges, and faces. A face with n cor-
ners is a sequence of n ≥ 3 different vertices. If
f = (v1, . . . , vn) is a face, all the cyclical permuta-
tions of its corners are considered identical, i.e., f =
(vi, . . . , vn, v1, . . . , vi−1) for i = 1, . . . , n. Multi-
ple connected faces (faces with holes) are not rep-
resentable. Vertices not contained in any face are
called isolated. An edge, e, is an un-ordered pair
e = {v1, v2} of different vertices that are consecu-
tive in one or more faces of the mesh. The graph
of a polygonal mesh is the graph defined by the
mesh vertices as graph vertices and the mesh edges
as graph edges. We will also denote the edge e =
{v1, v2, f1, . . . , fn}, where f1, . . . , fn are the inci-
dent mesh faces.

Duality and manifolds. We classify the edges and
vertices of a polygonal mesh as boundary, regular,
or singular. A boundary mesh edge has exactly one
incident face, a regular mesh edge has exactly two in-
cident faces, and a singular mesh edge has three or
more incident faces. The dual graph of a polygonal
mesh is the graph defined by the mesh faces as graph
vertices, and the regular mesh edges as graph edges.
The edge star of a vertex, v, is the set of edges, E(v),
incident to the vertex. The vertex star of a vertex, v,
is the set of vertices, V(v), connected to the vertex
through an edge. The face star of a vertex, v, is the
set of faces, F(v), incident to the vertex. A mesh ver-
tex is a boundary vertex if its edge star is composed
of exactly two boundary edges, and no singular edge,
that form an open path in the dual graph. A mesh ver-
tex is regular if its edge star is composed of only reg-
ular edges that form a loop (of mesh faces) in the dual
graph. A singular vertex is a vertex that is neither
regular nor boundary. A mesh is manifold if none
of its vertices and edges are singular. It is a mani-
fold without boundary if all its vertices and edges are
regular. The dual mesh of a polygonal mesh is de-
fined by the mesh faces incident to regular vertices
as dual vertices and the cycles of primal faces as-
sociated with primal regular vertices as dual faces.
Note that, for a manifold without boundary, the dual
mesh of its dual mesh has the same connectivity as
the original mesh. And the converse of this statement
is also true.

Orientation. The concepts of orientability and orien-
tation, which only apply to manifold meshes (non-
manifold meshes are non-orientable), play no role in
this paper and will be ignored.

Connected components. We say that two faces,
f1 and fn, are connected if we can find faces
f2, . . . , fn−1 such that each face, fi , shares an
edge with its successor, fi+1, in the sequence (note
that n = 1 and n = 2 are valid choices). This is an
equivalence relation in the set of faces, F, that de-
fines a partition into disjoint connected components,
F1, . . . , Fcc. Each connected component is a maxi-
mal subset of connected faces, i.e., a subset of faces
that satisfies the following property: given a face in
the subset, a second face is connected to the first
one if and only if it also belongs to the subset. To-
gether with its subset of supporting vertices, Vi ⊂ V ,
each connected component, Fi , defines a submesh,
Mi = (Vi, Fi). Note that the subsets of vertices,
V1, . . . , Vcc, are not necessarily disjoint, i.e., dif-
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Fig. 2. Procedure for constructing the connected components of a mesh
Fig. 3a,b. Example of triangle mesh quadrisection. a Coarse mesh; b quadrisected mesh with V -vertices (gray), corresponding
to vertices of the coarse mesh, and E-vertices (black)

ferent connected components may share vertices,
but they can be made disjoint by vertex duplication
(Gueziec et al. 1998). We call a mesh connected if
it is composed of only one connected component. It
is sufficient to know how to solve our problem for
connected meshes: if the mesh is not connected, first
decompose it into connected components, and then
solve the problem for each component.
An algorithm based on Tarjan’s (1983) fast union-
find data structure can be used to partition the set
of faces of a mesh into its connected components. It
is described in pseudocode in Fig. 2. It first initial-
izes the partition to one singleton per face, and then
for each edge of the mesh, and each pair of different
faces sharing the edge, replaces the subsets corre-
sponding to the two faces by their union.

Mappings. A mapping φ : M1 → M2 from a first
mesh M1 into a second mesh M2 is defined by a
vertex function, φV : V1 → V2, and a face function,
φF : F1 → F2, that satisfy the following additional
property: for every face f = (v1, . . . , vn) ∈ F1 of the
first mesh, the sequence of vertices of the second
mesh defined by the vertex function applied to the
corners of the face is (modulo cyclical permutations)
equal to the face of the second mesh that the face of
the first mesh is mapped to by the face function, i.e.,

φF( f )= (
φV (v1), . . . , φV (vn)

) ∈ F2 .

Equivalence. Two meshes M1 and M2 are called
equivalent if a mapping φ : M1 → M2 exists such
that both φV and φF are 1–1 and onto functions. In

such case the mapping φ is called a mesh equiva-
lence.
Note that since the sets of vertices and faces are fi-
nite, the mapping φ is an equivalence if and only if
the vertex and face functions are onto, and the num-
ber of vertices and faces in both meshes are the same:
V1 = V2 and F1 = F2.
A simple linear time and space algorithm can be used
to count the number of elements of the set

{ψ(a) : a ∈ A} ⊂ B ,

which can be used to determine if a function ψ :
A → B between two finite sets is onto or not. Cre-
ate a binary (0, 1) array with elements in correspon-
dence with the elements of B, and initialize to 0.
Then, for each element a ∈ A set the element corre-
sponding to ψ(a) to 1. Finally, add all the values of
the array. The function is onto if and only if the sum
is equal to the number of elements of B.
Quadrisection. Figure 3 shows an example of a
fine mesh (Fig. 3b) with 24 triangles resulting from
quadrisecting a coarse mesh (Fig. 3a) with 6 trian-
gles. The vertices of the coarse mesh are a subset of
the vertices of the fine mesh. We call these vertices
the V -vertices of the fine mesh. The remaining ver-
tices of the fine mesh are in 1–1 correspondence with
the edges of the coarse mesh. We call these vertices
the E-vertices of the fine mesh. Since we are only
concerned with connectivity here, the position of the
E-vertices in space is irrelevant, but for illustration
purposes, we draw them as the mid-edge points of
the coarse mesh edges in Fig. 3b. Each triangular
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face of the coarse mesh is replaced by four triangles
in the fine mesh. One triangle connects the three inci-
dent E-vertices, and each of the other three triangles
connects one V -vertex and two E-vertices.
In general, the quadrisection operator, Q, transforms
a triangular mesh, M = (V, F), into a new triangular
mesh, MQ = (V Q, F Q), and defines a vertex func-
tion which assigns each vertex of M into a V -vertex
of MQ , and a face function that assigns each face of
M into the center face of the corresponding quadri-
sected face. Both functions are 1–1 but not onto; they
do not define the mapping M → MQ , though, be-
cause they do not satisfy the additional property re-
quired by the definition of mapping given above.
With respect to the number of vertices, edges, and
faces, the following relations hold:


V Q = V + E ,
E Q = 2E +3F ,
F Q = 4F .

(1)

The quadrisection operator is one of many subdi-
vision schemes that introduces new vertices along
the edges of the coarse mesh, and it replaces the
coarse faces with fine faces supported on the new
set of vertices. In general, because of limitations of
the smoothing operators associated with these sub-
division methods, meshes are required to be mani-
fold without boundary, and special smoothing rules
can be designed for manifold meshes with bound-
aries (holes) (Biermann et al. 2000). But since the
connectivity refinement rules can be applied to non-
manifold meshes, and our algorithm to detect and
reconstruct subdivision connectivity also works on
non-manifold meshes, we allow our meshes to be
non-manifold.
Note that the quadrisection operator preserves and
reflects connected components, i.e., the connected
components of the mesh M are always in 1–1 cor-
respondence with the connected components of the
quadrisected mesh MQ .

3 Loop inverse subdivision

Figure 4 shows the result of quadrisecting a trian-
gle. We call the tile set a group of four connected
triangles with the same connectivity as the result of
quadrisecting one triangle, i.e., four triangles con-
nected as in Fig. 4b. The center triangle of a tile set
is connected to three corner triangles through regu-
lar edges. The corners of the tile set are the vertices

a b

Fig. 4a,b. Quadrisecting a triangle. a Triangle f =
(v1, v2, v3) with edges e12 = e(v1, v2), e23 = e(v2, v3),
and e31 = e(v3, v1). b The quadrisected triangle with
V -vertices v1, v2, and v3, E-vertices v′

3, v′
1, and v′

2,
and faces f0 = (v′

3, v
′
1, v

′
2), f1 = (v1, v

′
3, v

′
2), f2 =

(v2, v
′
1, v

′
3), and f3 = (v3, v

′
2, v

′
1)

of the corner triangles not shared with the center
triangle.
In a naive traversal algorithm, to solve our problem
tile sets are sequentially constructed while the mesh
is traversed, say in depth-first order, trying to cover
it avoiding tile overlaps, i.e., every face is allowed
to belong to at most one tile set. If, when the mesh
traversal procedure stops, not all the faces are cov-
ered by tile sets, a new traversal must be started from
a tile set not visited during the previous traversal.
Since each triangle is covered by up to four tile sets,
we may need to restart the traversal up to four times
to decide if the fine mesh has subdivision structure or
not. Non-manifold situations are difficult to handle,
and may require backtracking.

3.1 Algorithm overview

Instead of this sequential algorithm, we propose an
alternative global approach, where all the traversal is
avoided and replaced by a parallelizable algorithm
to construct the covering mesh of a triangular mesh.
Our algorithm has the same complexity as the se-
quential algorithm, but it is conceptually simpler,
and all the book-keeping required to support back-
tracking is avoided. But our algorithm is potentially
faster than the sequential algorithm, because the se-
quential algorithm requires four traversals to give
a negative answer.
The covering mesh of a triangle mesh is composed of
triangular faces called tiles supported on the same set
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5a 5b

6a 6b
Fig. 5a,b. The covering mesh of a triangular mesh. a Quadrisected mesh. b Covering mesh with color-coded connected com-
ponents. The connected components are artificially displaced in space. The quadrisection of the purple connected component
is equivalent to the input mesh
Fig. 6a,b. Notation used for tile construction. a A tile set. b The corresponding tile

of vertices. The tiles are in 1–1 correspondence with
all the tile sets that can be constructed in the original
mesh, and when quadrisected each one has the same
connectivity as the corresponding tile set.
Our Loop inverse subdivision algorithm, motivated
by the concept of the covering surface in Algebraic
Topology (Massey 1991), is based on a theorem that
states that a triangular mesh is a quadrisected mesh if
and only if it is equivalent to the quadrisection of one
connected component of its covering mesh. Figure 5
illustrates this construction for a simple quadrisected
mesh. The connected components of the covering
mesh are painted in different colors, and displaced in
space (vertex positions are irrelevant). Note that the
quadrisection of the purple connected component is
equivalent to the input mesh.
There is a canonical mapping between the covering
mesh and the corresponding triangular mesh that as-
signs vertices to vertices and faces to faces. Estab-
lishing whether or not the quadrisection of a given
connected component of the covering mesh is equiv-
alent to the original mesh reduces to simple and lin-
ear counting algorithms that determine if the canoni-
cal mapping restricted to the connected component is
1–1 and onto or not.

3.2 Constructing tiles on T-meshes

The tiles of a triangular mesh, M = (V, F), are best
defined by the algorithm used to construct them,
which we will describe with the notation introduced
in Fig. 6. Each face, f = (v1, v2, v3) ∈ F, with three
regular edges, e12, e23, and e31, has three neighbor-

ing triangular faces, f12, f23, and f31. Each one of
these faces, fij , has a vertex, vij , opposite to the cor-
responding edge, eij . If none of the three triangle
vertices v1, v2, v3 has valence 3, a tile correspond-
ing to f can be constructed. It is defined by these
three vertices f ′ = (v′

3, v
′
1, v

′
2), which are different to

each other. Note that as a mesh the quadrisected tile
is equivalent to the submesh of M defined by the face
f , its three immediate neighbors, f12, f23, and f31,
and their supporting vertices. Note that whenever
one of the three vertices v1, v2, or v3 has valency 3
(i.e., exactly three neighbours) two of the three tile
vertices v′

1, v′
2, v′

3 are identical and do not define a tri-
angle tile.

3.3 The covering mesh of a T-mesh

The covering mesh of the triangular mesh M = (V,F)
is the new triangular mesh MC = (V C, FC ) defined
by the vertices and tiles of M. Figure 7 illustrates the
algorithm to construct the covering mesh of a mesh
in pseudocode.
Note that even if the mesh is manifold without
boundary, the covering mesh may be non-manifold
and with boundary. Also, as illustrated in Fig. 8, each
face may belong to up to four different tile sets of
a triangular mesh, where the given fine triangle oc-
cupies either the center position or one of the three
corners in each one of the four tile sets. The num-
ber of tile sets covering a face may be less than four
and even zero, such as when a fine triangle or some
of its immediate neighboring triangles are incident to
boundary or singular edges.
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7

8

Fig. 7. Procedure to construct the covering mesh of a tri-
angular mesh. Notation as in Fig. 6

Fig. 8. In general, four tiles (defined by the white corners)
cover each triangle (light gray). Note that these four tiles
have neither common vertices nor common edges in the
covering mesh

The covering mesh operator, C, that assigns the tri-
angular mesh M = (V, F) to the new triangular mesh
MC = (V C, FC ) defines the canonical mapping π :
MCQ → M from the quadrisection of MC into M.
If we partition the covering mesh into connected
components, MC

1 , . . . MC
cc, and apply the quadrisec-

tion operator to each of them, we obtain a partition
of MCQ into connected components MCQ

1 , . . .MCQ
cc .

The canonical mapping π restricted to the connected
components also defines mappings πi : MCQ

i → M.
Note that, in general, the corresponding vertex and
face functions of these mappings are neither 1–1 nor
onto. For example, not all the faces of M may be
covered by faces of MCQ

i , and up to four faces of
MCQ

i may be covering the same face of M. With
respect to vertices, restricted to the V -vertices of
MCQ

i , the mapping πi is 1–1, but this is not necessar-
ily so when restricted to the E vertices; in addition,
some vertices of M may not correspond to any vertex
of MCQ

i .

3.4 Theorems

The following theorem constitutes the first main re-
sult of this paper:

Theorem 1. The connected triangular mesh M =
(V, F) has quadrisection connectivity if and only if
πi : MCQ

i → M is a mesh equivalence for some i.

The proof of the sufficiency is trivial. We rephrase
the necessity as follows:
Theorem 2. For every connected triangular mesh
M = (V, F), the canonical mapping πi : MQCQ

i →
MQ is a mesh equivalence for some i.

Proof. Each face of M defines one tile set in MQ and
a corresponding tile in MQC. Let F2 be the set of
all these tiles in 1–1 correspondence with F. Since
the vertices of these tiles are supported on V -vertices
of MQ , the set of vertices V 2 of these tiles is in
1–1 correspondence with the set of vertices V . We
have constructed a mesh equivalence between M and
the submesh M2 = (V 2, F2) of MQC, which can be
extended to an equivalence between the correspond-
ing quadrisected meshes. Since subdivision also pre-
serves connected components, we only need to show
that M2 is a connected component of MQC. M2 is
clearly connected, because it is equivalent to M; the
result of subdividing M is MQ , which is connected;
and the quadrisection operator does not change the
number of connected components. It only remains
to be shown that no other tiles are connected to M2.
But the tiles in F QC that are not members of F2 are
supported on E-vertices, while tiles in F2 are all sup-
ported on V -vertices, and so disconnected.

Theorem 1 is the basis of our algorithm to detect uni-
form quadrisection connectivity and to reconstruct
the subdivision structure, described in pseudocode in
Fig. 9.
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9

10

Fig. 9. Pseudocode of the procedure to determine if a mesh has quadrisection connectivity and to recover the subdivision
structure
Fig. 10. Procedure to determine whether the mapping πi : MCQ

i → M is an equivalence

To determine whether the mapping πi : MCQ
i → M

is an equivalence or not, it is not necessary to con-
struct the quadrisected connected component MCQ

i .
It is sufficient to count all the vertices and faces of the
tile sets covered by tiles in MC

i . Figure 10 shows such
an algorithm in pseudocode.

3.5 Implementation and results

A polygonal mesh is normally specified only by its
vertices and faces, such as in the IndexedFace-
Set node of the VRML standard (The Virtual Re-
ality Modeling Language 1997). Neither the edges,
which contain the incidence relationships among
faces, nor the connected components of the mesh are
explicitly represented.
An explicit representation of edges is needed both
to partition the set of faces into its connected com-
ponents, and by our tile construction algorithms de-
scribed in Sect. 3.2.
Efficient data structures to represent edges of ori-
ented manifold meshes, such as the half-edge data
structure (Weiler 1985) or the quad-edge data struc-
ture (Guibas and Stolfi 1985), are well known. For
non-manifolds meshes, these data structures need
extensions (Kettner 1998). We will assume that the
data structure used to represent the set of edges
efficiently implements the edge access function
e(v,w) = e(w, v), which when given two vertices v
and w returns the set of incident faces (which may

be empty if the two vertices do not correspond to an
edge of the mesh). In our implementation, we use
a hash table to implement the edge access function.
This data structure can be populated (constructed) in
linear time by visiting the faces in sequential order.
The full algorithm described by the pseudocode
methods shown in Figs. 2, 7, 9, and 10 has been im-
plemented in C++. Figures 1 and 11 show examples
where the algorithm has been run on meshes of mod-
erate size with simple and complex topology.

4 Catmull–Clark inverse subdivision

Figure 12a shows a portion of a polygonal mesh, and
Fig. 12d shows the result of subdividing the mesh
according to the Catmull–Clark (CC) scheme. The
vertices of the original mesh correspond to a sub-
set of the vertices of the refined mesh. We call these
vertices V -vertices. The remaining vertices of the re-
fined mesh correspond to faces (F-vertices), and to
edges (E-vertices) of the original mesh. The faces
of the refined mesh are all quadrilaterals and corre-
spond to corners (incident vertex-face pairs) of the
original mesh. They are constructed by connecting
each F-vertex to all the E-vertices associated with
edges of the corresponding face.
A tiling approach, similar to the one used in the Loop
inverse subdivision algorithm, can be followed to de-
tect and reconstruct CC subdivision.
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11a 11b

11c 11d

12a 12b

12c 12d

12e 12f

Fig. 11a–d. Example with complex topology. a Coarse triangular mesh (V = 10 952, F = 22 104, V − E + F = −100) is not
a quadrisected mesh because its covering mesh is connected. b Quadrisection of a coarse mesh (V = 44 108, F = 88 416, V −
E + F = −100). The covering mesh of this quadrisected mesh has two connected components. Rendering of edges has been
turned off. c First component of covering mesh (V = 33 156, F = 66 312V − E + F = −24 084). d Second component of
covering mesh equivalent to coarse mesh

Fig. 12a–f.
√

CC and Catmull–Clark (CC) subdivision. a A coarse mesh. b The faces are triangulated by connecting the new
face vertices (red) to the original vertices (blue). c The

√
CC connectivity is obtained by removing the original edges from (b).

d The CC connectivity is obtained after a second
√

CC refinement step. Once the vertices have been colored, e the primal con-
nectivity can be recovered from the

√
CC connectivity by inserting the primal diagonals and removing the dual vertices, and

f the dual connectivity can be recovered by inserting the dual diagonals and removing the primal vertices

A tile set of a quadrilateral mesh is defined by a regu-
lar vertex and all its incident faces. The correspond-
ing tile is constructed by removing the edges inci-
dent to the regular vertex and joining all the incident
quadrilaterals into a single face. The covering mesh
of a quadrilateral mesh is defined by mesh tiles and
the mesh vertices that are corners of tiles. A similar
theorem can be formulated and proved, but we leave

this to the reader. The only algorithm that changes
is the one to determine equivalence between a con-
nected component of the covering mesh and the orig-
inal mesh, but similar counting arguments can be
used.
If the mesh is a manifold without boundary the col-
oring of vertices in Fig. 12d suggest a much sim-
pler graph coloring approach, described below. But
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CC subdivision can be applied to any polygonal
mesh, including manifolds with boundary and non-
manifold edges, and the mesh resulting from the
subdivision process has the same topology and sin-
gularities. In these cases we cannot base the CC
inverse subdivision algorithm on the

√
CC inverse

subdivision algorithm, and we revert to the tiling ap-
proach.
It is sufficient to consider connected meshes, because
otherwise the algorithm is applied to each connected
component.

4.1 Algorithm for manifolds
without boundary

As noted by Kobbelt (1996), the operator that trans-
forms the connectivity of a manifold mesh with-
out boundary into its CC connectivity (Catmull
and Clark 1978) has a square root denoted

√
CC.

The result of applying this to the connectivity of
a manifold mesh without boundary has the ver-
tices and faces of the original mesh as vertices (V -
vertices and F-vertices), the edges of the original
face as quadrilateral faces, and the vertex-face in-
cident pairs as edges. The quad-edge data structure
(Guibas and Stolfi 1985) can be used to operate
on the

√
CC mesh. Figure 12b and c illustrate the

construction. Note that if we paint the V -vertices
and F-vertices with different colors, all the edges
of the

√
CC mesh connect vertices of different col-

ors. The converse of this fact is also true and allows
us to detect and reconstruct the

√
CC subdivision

structure:

Theorem 3. If the vertices of a manifold without
boundary quadrilateral mesh can be painted with
two colors so that every edge connects two vertices of
different color, then the mesh has

√
CC connectivity.

The proof is constructive. We give a sketch here but
leave the details to the reader. If red and blue are the
two colors used to paint the vertices of the mesh, we
construct a mesh on the red vertices (the red mesh)
by inserting the red diagonals and removing all the
blue vertices and all the original edges. We also con-
struct a mesh on the blue vertices (the blue mesh)
by inserting the blue diagonals and removing all the
red vertices and all the original edges. Figure 12e
and f illustrate this construction. It is easy to verify
that the connectivities of both red and blue meshes
are manifold without boundary, that the red and blue

meshes are the dual of each other, and that the orig-
inal mesh connectivity can be recovered by apply-
ing the

√
CC operator to either the red or the blue

mesh.
An algorithm to decide whether the vertices of
a graph can be painted with two colors so that ev-
ery edge connects vertices of a different color, and
to produce such a painting if possible, can be based
on a spanning tree traversal of the graph and a ver-
ification step. During the tree traversal we paint the
root with one of the colors, and every time we visit
a new vertex we paint it with the color different from
its parent’s. All the edges of the spanning tree sat-
isfy the two-color condition. Finally, we visit all the
other edges of the graph and verify whether or not the
two-color condition is satisfied.
To detect and reconstruct CC subdivision structure
in a manifold without boundary quadrilateral mesh,
we first apply the

√
CC inverse subdivision algo-

rithm described above. Then we look at the red and
blue meshes. If one of them is a manifold without
boundary quadrilateral mesh, we apply the

√
CC in-

verse subdivision algorithm to this mesh. If we ob-
tain a positive answer, the result of applying the CC
subdivision process to the reconstructed mesh after
the second

√
CC inverse subdivision step is equal to

the original mesh. Note that both the red and blue
meshes may be manifold without boundary quadri-
lateral meshes, in which case we may end up with
two results. These two meshes are necessarily the
dual of each other.

5 Doo–Sabin inverse subdivision

Since the Doo–Sabin (DS) connectivity of a mani-
fold without boundary polygonal mesh can be ob-
tained as the dual mesh connectivity of the Catmull–
Clark connectivity of the original mesh, the DS in-
verse subdivision algorithm is very simple: if the
dual mesh connectivity is composed of quadrilateral
faces, apply the Catmull–Clark inverse subdivision
algorithm for manifolds without boundary. Other-
wise, the mesh does not have DS subdivision struc-
ture. Note that this algorithm does not require the
explicit construction of the dual mesh of the original
mesh. All the painting can be done in the dual graph
that is obtained for free once mesh edges are con-
structed and classified, which must be done first to
determine if the mesh is manifold without boundary
or not.
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6 Conclusions

In this paper we introduced very simple and effi-
cient algorithms to detect Loop, Catmull–Clark, and
Doo–Sabin subdivision structure in the connectivity
of triangular, quadrilateral, and polygonal meshes,
and we demonstrated them in a number of examples.
As explained in the introduction, these algorithms
have important applications in modeling systems and
connectivity compression schemes. In a subsequent
paper we plan to study similar algorithms for adap-
tive subdivision schemes.
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