
Taubin / IEEE Visualization 2002 / Oct 27 - Nov 01 2002

BLIC : Bi-Level Isosurface Compression

Gabriel Taubin∗

IBM T. J. Watson Research Center

A B C

Figure 1: Compressed Cuberille isosurfaces as rendered by our simple Java decoder. A: spine set, 91×512×512 voxels, level 1500, 381,278
faces, 381,667 vertices, compressed to 0.6182 bits per face. B: UNC CThead data set, 113×256×256 voxels , level 600, 294,524 faces,
294,018 vertices, compressed to 0.7437 bits per face. C: UNC CThead data set, level 1160, 312,488 faces, 312,287 vertices, compressed to
0.8081 bits per face.

Abstract

In this paper we introduce a new and simple algorithm to compress
isosurface data. This is the data extracted by isosurface algorithms
from scalar functions defined on volume grids, and used to gener-
ate polygon meshes or alternative representations. In this algorithm
the mesh connectivity and a substantial proportion of the geometric
information are encoded to a fraction of a bit per Marching Cubes
vertex with a context based arithmetic coder closely related to the
JBIG binary image compression standard. The remaining optional
geometric information that specifies the location of each March-
ing Cubes vertex more precisely along its supporting intersecting
grid edge, is efficiently encoded in scan-order with the same mech-
anism. Vertex normals can optionally be computed as normalized
gradient vectors by the encoder and included in the bitstream after
quantization and entropy encoding, or computed by the decoder in
a postprocessing smoothing step. These choices are determined by
trade-offs associated with an in-core vs. out-of-core decoder struc-
ture. The main features of our algorithm are its extreme simplicity
and high compression rates .

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modelling—surface, solid, and object represen-
tations

Keywords: 3D Geometry Compression, Algorithms, Graphics.

∗IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights,
NY 10598 taubin@us.ibm.com

1 INTRODUCTION

Isosurface extraction algorithms construct polygon mesh approx-
imations to level sets of scalar functions specified at the vertices
of a 3D regular grid. The most popular isosurface algorithms [9]
are Cuberille [1] and Marching Cubes [14]. In this paper we refer
to the polygon meshes produced by these and related algorithms
as isosurface meshes. Despite the widespread use of these meshes
in scientific visualization and medical applications, and their very
large size, special purpose algorithms to compress them for effi-
cient storage and fast download have not been proposed until very
recently [24, 18, 38, 20, 37]. We compare our new algorithm with
these recent approaches in section 8, after the relevant concepts are
introduced.

Polygon Mesh Coding A number of general purpose polygon
mesh compression algorithms have been proposed in recent years.
Deering [3] developed a mesh compression scheme for hardware
acceleration. Taubin and Rossignac [30], Touma and Gotsman [31],
Rossignac [21], Gumhold and Strasser [5], and others, introduced
methods to encode the connectivity of triangle meshes with no loss
of information. King et. al. [12] developed a method to compress
quadrilateral meshes. Methods to encode the connectivity of poly-
gon meshes were introduced by Isenburg and Snoeyink [6], Konrod
and Gotsman [13], and Khodakovsky et.al. [10]. These algorithms
focus on compressing the connectivity information very efficiently,
and are all based on a traversal of the primal or dual graph of the
mesh. Some of them compress connectivity of very regular meshes
to a small fraction of a bit per vertex, and all to 2-4 bits per vertex
in the worst case. When the geometry information (vertex coordi-
nates, and optionally normals, colors, and texture coordinates) is
also taken into account, the cost per vertex increases considerably.
For example, adding only vertex coordinates quantized to 10 bits
per vertex lifts the cost to typically 8-16 bits per vertex. In addition,



Taubin / IEEE Visualization 2002 / Oct 27 - Nov 01 2002

all of these approaches are incompatible with the out-of-core na-
ture of isosurface extraction algorithms that visit the voxels in scan
order.

Resampling and Subdivision Khodakovsky et.al. [11] fol-
low a different approach to compress large connected and uniformly
sampled meshes of low topological complexity, based on resam-
pling, subdivision and wavelets. They obtain up to one order of
magnitude better compression rates than with the connectivity pre-
serving schemes, by approximating the mesh geometry with a sub-
division mesh, and compressing this mesh instead. Wood et.al.
[35] introduced a method based on surface wave propagation to ex-
tract isosurfaces from distance volumes that produces semi-regular
multi-resolution meshes. These meshes can be compressed with
Khodakovsky’s wavelet-based scheme.

Compressed Isosurfaces Isosurface algorithms take as input
very large volume data files, and produce polygon meshes with very
large number of vertices and faces. For remote visualization, we
can transmit either the volume data and run the isosurface algorithm
in the client, or compute the isosurface in the server and transmit the
resulting polygon mesh. In both cases the transmission time con-
stitutes a major bottleneck because of the file sizes involved, even
using general purpose mesh compression schemes in the second
case. And this is true without even considering the computational
resources of the client.

We follow a third approach based on an observation made by
Saupe and Kuska [24]. The only information from the volume
data the isosurface algorithm uses to construct the polygon mesh
is: which grid edges cross the desired level set, and where these in-
tersection points are located within the edges. As a result the isosur-
face algorithm can be decomposed into two processes: the server
or encoder process, which scans the volume data, determines inter-
secting edges, and computes locations of intersection points; and
the client or decoder process, which reconstructs the polygon mesh
from the data transmitted by the server process. Our contribution is
a very simple scheme to efficiently encode these data. In addition,
we consider the tradeoffs associated with optionally computing nor-
mal vectors (used mainly for shading) in the server or the client.

2 ISOSURFACE ALGORITHMS

An isosurface algorithm constructs a polygon mesh approximation
of a level set of a scalar function defined in a finite 3D volume. The
function f(p) is usually specified by its values fα = f(pα) on a
regular grid of three dimensional points

G = {pα : α = (α0, α1, α2) ∈ [[n0]]×[[n1]]×[[n2]]} ,

where [[nj ]] = {0, . . . , nj − 1}, and by a method to interpolate
in between these values. The surface is usually represented as a
polygon mesh, and is specified by its isovalue f0. Furthermore,
the interpolation scheme is assumed to be linear along the edges
of the grid, so that the isosurface cuts each edge in no more than
one point. If pα and pβ are grid points connected by an edge, and
fα > f0 > fβ , the location of the point pαβ where the isosurface
intersects the edge is

pαβ =
fα − f0

fα − fβ
pβ +

fβ − f0

fβ − fα
pα . (1)

Marching Cubes One of the most popular isosurface extraction
algorithm is Marching Cubes [14]. In this algorithm the points de-
fined by the intersection of the isosurface with the edges of the grid
are the vertices of the polygon mesh. These vertices are connected

forming polygon faces according to the following procedure. Each
set of eight neighboring grid points define a small cube called a cell

Cα = {pα+β : β ∈ {0, 1}3}.

Since the function value associated with each of the eight corners
of a cell may be either above or below the isovalue (isovalues equal
to grid function values are called singular and should be avoided),
there are 28 = 256 possible configurations. A polygonization of
the vertices within each cell for each one of these configurations is
stored in a static look-up table. When symmetries are taken into
account, the size of the table can be reduced quite significantly.

Topological Inconsistencies Since some of the cases admit
multiple polygonizations, care should be taken during the construc-
tion of the table to avoid the generation of polygon meshes with
topological inconsistencies [32]. One such approach is based on
estimating the value at the cell center using tri-linear interpolation
within each cell. In the continuum, the surface defined by a level set
of a smooth function without singularities is an orientable manifold
without boundary which separates space into two disconnected sets,
the inside where the function is negative, and the outside where the
function is positive (or vice-versa). For most applications it is desir-
able that the isosurface algorithm generates a mesh with the same
characteristics. This property is guaranteed when the mesh is the
boundary of a regular solid (without self intersections).

Cuberille Kalvin [8] proposed one way to resolve this inconsis-
tency problem by observing that the polygon mesh generated by
Marching Cubes is the dual mesh of the quadrilateral mesh gener-
ated by the Cuberille algorithm [1]. Each vertex of the grid where
the scalar function is specified (the primal grid) is the centroid of
a dual grid cell, or voxel. Every edge of the primal grid intersects
the common face of the two voxels corresponding to the ends of
the edge. The mesh generated by the Cuberille algorithm is the
regularized (converted to manifold) boundary surface of the solid
defined by the set of voxels corresponding to grid vertices with
scalar value above the isovalue. Without regularization, in gen-
eral this mesh is highly singular (non-manifold). The conversion to
manifold requires duplication of vertices and edges, so that in the
resulting mesh every edge has exactly two incident faces. Which
vertices to duplicate and how to connect the faces can be deter-
mined by virtually shrinking the solid, moving the faces in the di-
rection of the inside. The multiplicity of each dual grid vertex in
the regularized mesh only depends on the local connectivity of the
eight incident voxels. Again, the regularization can be done by ta-
ble look-up while the volume data is being scanned, with a table of
size 28 = 256.

Multiple Reconstruction Schemes What is important is to
note that the Cuberille algorithm can construct the isosurface mesh
from the same information as the Marching Cubes algorithm. The
edge intersections in the primal mesh specify the location of the
face centroids of the Cuberille mesh. The location of the cuber-
ille vertices can then be computed by local averaging, or by using
more accurate schemes [4, 27]. In addition, the client can apply a
number of subsequent smoothing algorithms to improve the mesh
appearance [26, 28].

The situation is similar for normals. If computed in the server
as the gradient of the scalar function at the edge intersection points
[36, 16, 19], and included in the compressed data, the Marching
Cubes decoder will treat them as vertex normals, and the Cuberille
decoder as face normals. If the normals are not included in the
compressed data, then it is up to the client to decide how to estimate
them from the vertex coordinates and the connectivity information.

2



Taubin / IEEE Visualization 2002 / Oct 27 - Nov 01 2002

IsosurfaceEncoder (F, f0)
for α0 = 0, . . . , n0−1

for α1 = 0, . . . , n1−1
for α2 = 0, . . . , n2−1

# occupancy bit
bα = (fα > f0) ? 1 : 0
encode (bα)
for j = 0, 1, 2

if bα �= bα−δj

# encode intersection point
encode (pα,j)
# encode normal (optional)
encode (nα,j)

end if
end for

end for
end for

end for
return

Figure 2: High level description of encoder algorithm.

The implication of these observations is that there is consider-
able freedom in the implementation of the decoder, making abso-
lutely no changes to the encoder or the compressed bitstream. It is
not even necessary for the decoder to produce a polygon mesh as
output. For visualization purposes, and in particular if normals are
included in the compressed data, a point-based approach [22] could
be very effective.

3 ENCODER

The encoder algorithm scans the volume data, determines which
grid edges intersect the isosurface, computes the location of the
intersection points along the corresponding edges, optionally gen-
erates normal vectors for these points as scalar function gradient
estimates, and entropy encodes all of this data after quantization.
In this section we describe what data is encoded, and the order of
the encoded data elements in the bitstream. Figure 2 is a high level
pseudo-code description of the encoder algorithm. In the next sec-
tion we describe the methods we use to entropy encode these data.

Occupancy Image Since whether an edge intersects the isosur-
face or not depends on the values of the scalar function at the edge
ends, we encode the occupancy image. This is a 3D binary image
defined by one bit per grid vertex

bα =
{

1 if fα < f0

0 otherwise

specifying whether the scalar function attains a value above or be-
low the isovalue on that vertex. We also define bα = 0 if αj < 0 or
αj ≥ nj for some j ∈ {0, 1, 2}. This ensures that the isosurface
generated is closed (water-tight). We encode these bits in scan or-
der. Since there are more edges than vertices, encoding one bit per
edge would be wasteful, and may lead to inconsistencies.

Intersection Points The location of the intersection points and
the optional normals are associated with the intersecting edges,
which can be determined from the occupancy image. Except for
boundary vertices, each grid vertex has six incident edges

{pα, pα+β} : β = ± δj ,

with δ0 = (100), δ1 = (010), and δ2 = (001). To simplify
the description, we add the missing edges as virtual edges to the
boundary vertices, but we do not include them in the compressed
data. Of these six incident edges, three connect the vertex with
preceding vertices, and the other three with subsequent vertices in
the scan order. Regarding the edges as oriented according to the
vertex scan order, each edge has a beginning and end vertex. We
order the edges, first by the scan order of the end vertex, and then
by the direction of the displacement (0,1,2)

eα,j = {pα, pα−δj} : j = 0, 1, 2 .

The position of the intersection point pα,j along the edge eα,j

is determined by equation 1. This data has to be encoded in the
compressed data only if the occupancy image has different values
at the ends of the edge, i.e., if bα−δj �= bα. We specify the location
of the intersection point along the edge with a number between zero
and one 0 ≤ tα,j ≤ 1 such that

pα,j = (1 − tα,j) pα−δj + tα,j pα .

Normal Vectors Since the gradient vector of a function is nor-
mal to its level sets, normals used for shading can optionally be
computed during the volume traversal as finite difference approxi-
mations to the gradient vectors normalized to unit length [36].

Order of Transmission The encoder and decoder must have
a hard-coded convention for the order of transmission of all these
data. Since the occupancy image is encoded in scan order, after
decoding each bit the decoder has all the information necessary to
determine which of the three edges ending at the corresponding ver-
tex are intersecting or not. We encode the optional data (positions
and normals) corresponding to these edges in edge order, right af-
ter the occupancy bit corresponding to the end vertex. With this
data organization, in case of loss of data due to interrupted trans-
mission, a partial reconstruction using all the transmitted data can
be obtained.

4 ENTROPY ENCODING

Entropy encoding is the problem of how to represent with a min-
imum number of bits a sequence of independent symbols X =
(x1, . . . , xN ) that belong to a finite alphabet Σ = {σ1, . . . , σn}
[23]. Symbols that appear more often in the sequence should be rep-
resented with fewer bits than those that appear more infrequently.
The absolute lower bound for the total number of bits necessary to
represent the sequence X with no loss of information is given by
the entropy [23]. In practice the arithmetic coder [34] asymptoti-
cally achieves the entropy. Arithmetic coding is used as the basis of
many image and data compression schemes and applications [15],
very good public domain software implementations [33], and even
hardware implementations [25] are available.

To deal with the lack of stationary distribution of symbols in the
sequence, adaptive models are used. In arithmetic coding with an
adaptive model the encoder updates the alphabet probabilities after
encoding each symbol. Since encoder and decoder must use the
same model to encode and decode each symbol, the model update
procedure must be based on data previously encoded, and agreed
upon information. Among these data are the initial probabilities,
which may be hard-coded or included in the compressed data. A
common practice is to start with uniform probabilities and keep
track of the relative symbol frequencies as probability estimates.

For binary data, where the alphabet is composed of two symbols
Σ = {0, 1}, keeping track of global symbol frequencies is usually
not good enough as a model update procedure, and a context-based
procedure is used. This is a state machine model with separate sets

3



Taubin / IEEE Visualization 2002 / Oct 27 - Nov 01 2002

01
23456

789

0123
456789

Figure 3: The three and two line templates used in JBIG to deter-
mine the arithmetic coding context. The red pixel is about to be
encoded. The orange pixels define a 10 bit context. The pixels
surrounded by green edges have already been encoded.

Figure 4: The seven bit template used to determine the context to
encode each bit of the occupancy image. The red pixel is about to
be encoded. The orange pixels define the 7 bit context. The pixels
surrounded by green edges have already been encoded.

of probability estimates associated with each state or context. The
update procedure determines the context from previously encoded
data (such as values of previously encoded neighboring pixels in an
image), and after the symbol is encoded with the probabilities asso-
ciated with a context, the set of probabilities corresponding to that
context is updated, but not the other. Context-based arithmetic cod-
ing is a very efficient adaptive compression scheme. It is used in the
JBIG lossless image compression standard, and is the main reason
for the high efficiency of our isosurface compression scheme.

JBIG JBIG is short for Joint Bi-level Image experts Group. This
is both the name of a standards committee, and of a particular
scheme for the lossless compression of binary images [7]. It can
also be used for coding gray scale and color images with limited
numbers of bits per pixel. JBIG is one of the best available schemes
for lossless image compression.

The JBIG algorithm is based on context based arithmetic cod-
ing. For each pixel in an image a context is derived from a specific
fixed pattern of surrounding pixels preceding the current pixel in the
scan order. The standard defines several such neighborhoods. The
10 pixels included in two of these neighborhoods are illustrated in
figure 3. These binary pixels values are used to construct a 10-bit
context number, used to index into a list of context probability esti-
mates.

Encoding the Occupancy Image We can look at the occu-
pancy image as a stack of binary images, one for each value of

α0 = 0, . . . , n0−1. One possibility is to use JBIG to encode these
binary images independently of each other. The results are good,
but the high correlation normally existing among spatially close
voxels in neighboring layers is not taken into account. Instead, we
use values from neighboring voxels not only in the current layer, but
also in the previous layer, to build the context used to encode each
voxel value. This simple idea allows us to increase the encoding
efficiency quite significantly. In average we reduce the size of the
compressed data by 50% compared to compressing the layers indi-
vidually. There is a trade-off to be made in deciding how to build
the context from neighboring voxels. Using more voxels increases
the number of contexts, and so, the amount of memory needed to
maintain the probability estimates, but can potentially lead to more
efficient encoding. We have found that the simplest possible neigh-
borhood performs very well. Of all the voxels that share a vertex,
edge, or face with a given voxel, we use seven that precede it in
the scan order to build a seven bit context cα by concatenating the
bits of these voxels in scan order. We use this context to encode
the voxel bit bα. The configuration is illustrated in figure 4. If we
denote cα|j the j-th bit of cα from least to most significant, we have




cα|0 = bα−(001)

cα|1 = bα−(010)

cα|2 = bα−(011)

cα|3 = bα−(100)

cα|4 = bα−(101)

cα|5 = bα−(110)

cα|6 = bα−(111)

Encoding the Intersection Points The second piece of infor-
mation that needs to be encoded is the position of each intersection
point pα,j , i.e., the number 0 ≤ tα,j ≤ 1. This number is uniformly
quantized to B bits, and the quantized value, which corresponds to
an integer number between 0 and 2B−1, is entropy encoded with
no further loss. The decoder reconstructs the quantized value t̂α,j

as the centroid of the segment defined by the corresponding inte-
ger. For example, if B = 0, which is sufficient in many cases,
the reconstructed value is t̂α,j = 0.5 independent of α and δj . In
this case, no intersection point data is actually included in the com-
pressed data, and all the geometry information is derived from the
occupancy image. If B = 1, i.e., one bit is encoded per intersection
point, there are two possible reconstructed values: 0.25 and 0.75.
In general, if the B-bits integer to be encoded is h, the reconstructed
value is

t̂α,j =
h + 0.5

2B
.

We look at each bitplane of these encoded integers as a new
3D binary image of the same dimensions as the occupancy image.
By encoder-decoder convention we set the values corresponding
to non-intersecting edges to zero, and we encode these 3B three-
dimensional binary images (one each for j = 0, 1, 2 and each bit-
plane) with the same context-based method as we encode the oc-
cupancy image, except that we maintain separate context probabil-
ities for each bitplane and each axis. The only difference is that
none of the zero values agreed upon by the encoder and decoder
are included in the bitstream. The encoder just skips them, and the
decoder can set the corresponding bits to zero because it can de-
termine which are these bits from the occupancy image bits. Both
the encoder and the decoder have to reconstruct these bits, though,
because they are needed to build the contexts used to encode and
decode the corresponding bits.

Encoding Normal Vectors The last piece of information to be
encoded is the normal vectors at the intersection points. These vec-
tors were optionally computed during the volume traversal as finite

4



Taubin / IEEE Visualization 2002 / Oct 27 - Nov 01 2002

Figure 5: Decoder implemented in Java and integrated with a sim-
ple interactive viewer.

difference approximations to the gradient vectors, and normalized
to unit length.

In the MPEG-4 standard [17] polygon mesh normals are quan-
tized to 3 + 2S bits as follows. The first 3 bits determine the octant
the normal vector belongs to. Each of these octants corresponds to
a triangular face of a regular octahedron with vertices on the coordi-
nate axes. Each of these triangular faces is recursively quadrisected
(Loop subdivided) S times. The centroids of the 22S resulting trian-
gles define vectors, which after normalization to unit length, define
the quantized values. The angle distribution of quantized normals
is not uniform here, but the lack of uniformity is not severe. On the
positive side, the scheme does not require evaluation of transcen-
dental functions. We quantize the normals with a variation of this
method to B = 2S bits. As in the case of intersection points, if
B = 0 nothing is encoded, and the quantized normals are defined
by the edges containing the intersection points. Otherwise, the first
two bits determine the octant, and the remaining bits the level of
triangle subdivision. We only need two bits to determine the oc-
tant because each normal cannot deviate by more than 90◦ from
the quantized value corresponding to zero bits. Alternatively, the
quantization scheme proposed by Deering [3] can be used.

5 DECODER

The decoder algorithm can be decomposed into two parts. The first
part is a loop similar in structure to the encoder algorithm shown
in figure 2. In this loop the occupancy image is decoded in scan
order, and the optional values of intersection points and normals
are reconstructed, if present in the compressed data. The second
part of the algorithm, which is performed simultaneously within the
loop, is the reconstruction of the data structure used for subsequent
processing. This could be the polygon mesh produced by Marching
Cubes, the quadrilateral mesh produced by Cuberille, or just a set
of oriented points organized in a hierarchical data structure used
by Qsplat [22]. As we mentioned before, we have considerable
freedom in the implementation of this second part. Our current
implementation is based on the Cuberille method.

IN-CORE vs. OUT-OF-CORE The main decision in the de-
sign of the decoder is determined by whether the reconstructed
mesh can be kept in memory (in-core) or not (out-of-core). The
highest compression rates are obtained with an in-core implemen-
tation, where intersection points and normal vectors are quantized
to zero bits. In this case the encoder is simplified because the com-
putation of intersection points and estimation of normal vectors is
avoided. Instead, to improve the appearance of the reconstructed
cuberille mesh, smoothing schemes are used to displace the ver-

Figure 6: Interactive isosurface selection and volume data visual-
izer.

tices and normals from their reconstructed positions aligned with
the grid [4, 26, 28].

6 IMPLEMENTATION

We have implemented one encoder in C++, and two decoders; one
in C++, and the other in Java. The C++ encoder and decoder are
command line applications. For the arithmetic coder, we used the
public domain software implementation by Wheeler [33], with mi-
nor modifications. The encoder reads a header file and a binary data
file, and produces a compressed data file. The compressed data file
includes information such as number of samples along each axis,
as well as a linear transformation to scale, rotate, and translate the
reconstructed mesh to user coordinates. This is important for ex-
ample when processing medical data (CT and MRI) in which the
sampling rate along one axis is different from the others. The C++
decoder reads the compressed data, constructs a Cuberille mesh in-
core, optionally applies smoothing operators to vertex coordinates
and normals, and saves the result as a VRML file. The Java de-
coder implements the same algorithms, but instead of saving the
result as a file, it is integrated with a simple 3D rendering engine
which allows the user to navigate around the reconstructed mesh
and change the orientation of the light source. All the isosurfaces
shown in the paper have been generated with this decoder. More ad-
vanced rendering techniques produce much better images. Figure
5 shows screen-dumps of the application. In addition, we imple-
mented a simple Java user interface to visualize volume data, and
to choose appropriate thresholds. Figure 6 shows a screen dump of
this application, which also works as a front-end for the command
line encoder.

In our current in-core decoder implementation, the encoding of
intersection points is supported, but normal vectors are estimated
by smoothing the normals to the faces of the cuberille. We look
at these normals as a vector field defined on the dual graph of the
Cuberille mesh. We iteratively transfer normals from the dual to
the primal graph, and then back from the primal to the dual. We
compute a primal vector field (defined on the graph of the Cuber-
ille mesh) from the dual vector field as follows. For each vertex of
the Cuberille mesh we average the values associated with incident

5



Taubin / IEEE Visualization 2002 / Oct 27 - Nov 01 2002

A B

C D

Figure 7: Some isosurface meshes used in our experiments, as ren-
dered by our simple Java decoder. A: data set generated by eval-
uation of smooth analytic function on grid vertices. B: Stanford
bunny CT data set. C: numerical simulation of electrostatic poten-
tial of iron molecule. D: section 6 of Visible man fresh CT data
set.

faces, and then we normalize the value to unit length. This simple
procedure produces satisfactory results. More complex procedures
can be used as well [16, 28]. For medical applications, where guar-
antees of conservation of geometric or differential properties are
often required, the smoothing process can be constrained so that
each mesh vertex stays within a voxel center at the initial Cuber-
ille vertex position. However, in our current implementation these
constraints are not taken into account.

The reconstructed intersection points are the locations of the ver-
tices of the Marching Cubes mesh (without triangulation of faces).
Since the connectivity of the Cuberille mesh that our algorithm con-
structs is dual of Marching Cubes, we determine the location of its
vertices as the centroids of the Marching Cubes faces. That is, in
our implementation each Cuberille vertex position is computed as
the average of the face centroids of incident faces. As a more com-
plex alternative we can determine the location of the vertices by
dual mesh resampling [27]. It is important to implement an algo-
rithm that produces meshes without topological inconsistencies to
prevent artifacts.

7 RESULTS

In this section we present some preliminary results. We have exper-
imented extracting and compressing isosurfaces corresponding to
different isolevels on the same volume data set, on different volume
data sets, and on volume data sets generated by down-sampling.
Figure 7 shows renderings of some Cuberille isosurface meshes
produced by our Java decoder. The tables in figures 8 and 9 show
numerical results for some of these data sets.

For the data sets we used in our experiments, a quantization level

grid size B bits bits/face
361×128×128 0 116,377 0.5005
361×128×128 1 339,379 1.4595
361×128×128 2 541,244 2.3276
361×256×256 0 306,077 0.7582
361×256×256 1 707,895 1.7536
361×256×256 2 1,109,041 2.7473
361×512×512 0 763,598 0.7440
361×512×512 1 1,788,794 1.7428
361×512×512 2 2,813,713 2.7413

Figure 8: Compression results for the Stanford bunny CT scanned
data set, isolevel 1500. The grid of size 361×512×512is the original
data set. The other two were generated by down-sampling within
each layer.

grid size B bits bits/face
160×128×128 0 123,142 0.6967
160×128×128 1 281,829 1.5944
160×128×128 2 439,966 2.4891
160×256×256 0 404,792 0.7144
160×256×256 1 908,257 1.6029
160×256×256 2 1,411,703 2.4914
160×512×512 0 1,201,172 0.6475
160×512×512 1 2,829,295 1.5251
160×512×512 2 4,452,208 2.3999

Figure 9: Compression results for the Visible Man fresh CT data
set, section 6, isolevel 600. The grid of size 160× 512× 512
is the original data set. The other two were generated by down-
sampling within each layer. Number of faces are 1855144, 566630,
and 176758, respectively.

B of zero bits, coupled with smoothing of vertex positions and nor-
mals as a decoder postprocessing step, produced excellent results,
with a typical bitrate of less than one bit per face. The bitrate in-
creases somehow when the data is noisy, and the ratio of isosur-
face faces to voxels increases. Roughly speaking, if the intersection
points are uniformly quantized to B bits, we observe compression
bitrates of about 0.60 − 0.95 bits per face for B = 0, 1.20 − 1.80
bits per face for B = 1, and 2.10−2.90 bits per face for B = 3. An
these results seem to be fairly independent of the grid dimensions.
Remember that this is without including normals in the compressed
data, which are computed by smoothing. Note that the best com-
pression bitrates are obtained for B = 0, which corresponds to the
very efficient encoding of the occupancy image, and every increase
of one bit in the quantization parameter B results in roughly one
bit increase in the compression bitrate. In our experience, this high
entropy in the quantized intersection points is due to the lack of
predictors. For example, in [29] a smoothing operator is used as a
predictor to efficiently encode vertex displacements from a coarse
mesh to a refined mesh. We could do the same here to predict each
bitplane of the quantized intersection points, and then encode the
correction bits which hopefully will have lower entropy. We intend
to explore this issue in the near future.

Figure 10 shows the same isosurface at different quantization
levels, and the table in figure 11 shows the sizes and compression
rates for these meshes. The last column of this table shows our
distortion measurements. We compare the position of the vertices
of a reference and a distorted mesh, both with the same connectiv-
ity. As the reference mesh we take what we would obtain without
quantization. The distorted mesh corresponds to finite values of
B. In both cases we apply the same smoothing step before mak-
ing the measurements. As distortion measure we consider the ratio
of average vertex displacement divided by average edge length in

6



Taubin / IEEE Visualization 2002 / Oct 27 - Nov 01 2002

B = 0 B = 2 B = 4

Figure 10: No apparent visual dependence on number of bits of
quantization for intersection points. Data set CThead, volume size
113 × 256 × 256, level 600. Rate-Distortion information is in the
table shown in figure 11.

name level B bits bits/face distortion
CThead 600 0 219,039 0.7437 0.2845
CThead 600 1 468,209 1.5897 0.1466
CThead 600 2 740,414 2.5139 0.0736
CThead 600 3 1,020,380 3.4645 0.0367
CThead 600 4 1,304,247 4.4283 0.0186
CThead 1160 0 252,527 0.8081 0.3295
CThead 1160 1 530,025 1.6961 0.1560
CThead 1160 2 830,961 2.6592 0.0769
CThead 1160 3 1,139,971 3.6480 0.0389
CThead 1160 4 1,451,176 4.6439 0.0194

Figure 11: Compression results as a function of quantization pa-
rameter B, corresponding to the volume data set CThead meshes
isolevel 600 (CThead-600-0, CThead-600-2, and CThead-600-4
shown in figure 10), and isolevel 1160. The mesh of level 600 has
294524 faces, and the mesh of level 1160 has 312488 faces. The
last two columns can be used to plot rate-distortion curves.

name level grid bits bits/face
CTbunny 1500 361×128×128 185,320 1.0598
CTbunny 1500 361×256×256 468,840 1.1615
CTbunny 1500 361×512×512 1,218,888 1.1876
CTman6 600 160×128×128 252,216 1.4269
CTman6 600 160×256×256 818,736 1.4450
CThead 600 113×256×256 423,952 1.4394
CThead 1160 113×256×256 517,720 1.6567

Figure 12: Connectivity-only compression results (no geometry)
for the polygon meshes of figures 8, 9, and 11, with the polygon-
mesh coder of Khodakovsky et.al. [10].

the reference mesh. This is not the most common way of measur-
ing distortion. The Metro tool [2], which measures the Haussdorf
distance between two meshes, has become a de-facto standard, but
incompatible file formats and time constraints have prevented us
from reporting results based on this tool. We plan to perform more
exhaustive rate-distortion testing in the near future.

The polygon-mesh coder introduced by Khodakovsky et.al. [10]
is considered as one of the best general polygon mesh connectivity
coders. For comparison purposes, we show in figure 12 the results
obtained compressing the connectivity information of the meshes
of figures 8, 9, and 11 with this coder. Note that no geometry
information is included in the bitrates because the current imple-
mentation does not compress the geometry data. With our in-core
implementation we could not reconstruct the full resolution visible
man isosurface due to lack of memory.

8 RELATED WORK

Despite their widespread use, only during the last year researchers
started to address the problem of compressing isosurfaces.

Saupe and Kuska [24] presented an algorithm to compress iso-
surfaces closely related to ours. They extract and encode the occu-
pancy image and intersection points. Normals are computed from
the reconstructed Marching Cubes polygon mesh. The occupancy
image is encoded with an octree-based scheme to deal more effi-
ciently with large homogeneous regions of empty space. The inter-
section points are encoded with a multi-symbol context-based arith-
metic coder. They compare the compression rates of their method
with a number of existing schemes. They report results on isosur-
faces corresponding to five different isovalues, extracted from a CT
scan with a grid of size 250×192×168, and used B = 4 to quan-
tize intersection point to obtain a global vertex quantization of 12
bits per coordinate. They do this to be able to compare with ir-
regular mesh compression schemes. They report compression rates
between 11.56 and 11.77 bits per polygon. We do not have access
to the same data, and in our experience B = 0 is almost always
good enough for this kind of data, if a postprocessing smoothing
step is added in the decoder. Look at the example shown in figure
10. But for B = 4 and similar medical data, such as figure1 B and
C, we obtain compression rates of 4.42 and 4.64. This is about 2.5
times better. But again, with B = 2, B = 1, and sometimes even
B = 0, plus smoothing of vertices and normals, the results are al-
most indistinguishable. They also report results corresponding to
four isosurface extracted from smooth analytic functions evaluated
on grid vertices. The grid size is 192×192×192. The compression
rates here range from 9.68 to 10.69 bits per polygon. Still more
than twice what our simpler scheme produces.

Zhang et.al. [38] have a short discussion about isosurface com-
pression with the larger context of massively parallel isosurface ren-
dering. They propose a scheme similar in nature to ours, where the
occupancy image and intersection points are encoded, but very su-
perficial details are provided given the limited space. They propose
to entropy encode the occupancy image using run-length encoding
or arithmetic coding, but they do not seem to take advantage of
correlation between consecutive layers. They report total byte size
of compressed files for five different data sets, but it is difficult to
compare due to lack of details about the meshe sizes.

Mroz and Hauser [18] encode the occupancy image using a more
complex scheme based on chain coding, where the voxels that con-
tain isosurface intersections are linked in long chains and repre-
sented as a sequence of symbols, each one specifying in which di-
rection to go to visit the next cell. This is potentially more efficient,
because the number of symbols to be encoded is proportional to
the number of vertices or faces of the reconstructed mesh, as op-
posed to the number of voxels in our case. This representation also
rules out an out-of core implementation, because typically chains
traverse the volume in random fashion. On the positive side, this
data can be rendered directly from the compressed data, i.e., de-
coded on-the-fly. This representation is ideal for a decoder based
on oriented particles or volume rendering, in which case one addi-
tional normal per cell must be encoded in a separate channel. This
method is also significantly less efficient than ours, even if normals
are not included in the compressed data. They report typical rates
between 2.0 and 2.5 bits per chained voxel. Since they do not in-
clude additional information to specify the location of the voxel
more precisely, these results are 3 − 4 time worse than our scheme
without normals and B = 0 bits of quantization for intersection
points.

Yang and Wu [37] describe a rather complex method to compress
triangle meshes generated by the Marching Cubes algorithm. Each
mesh vertex is represented by the index of the containing cube, the
index of the supporting edge, and the position of the vertex along

7



Taubin / IEEE Visualization 2002 / Oct 27 - Nov 01 2002

the supporting edge (our tα,j). The decoder interconnects these ver-
tices forming triangles using the occupancy image, as in the orig-
inal Marching Cubes paper [14]. But the occupancy image is not
encoded in the bitstream. Instead, it is reconstructed from the cube
and edge indices in the encoding of mesh vertices by a complex
procedure that in fact determines the connected components of the
grid graph after removing the edges where mesh vertices are sup-
ported. Normal vectors are not compressed. Compression bitrates
are several times worse than with our scheme. And it is not possible
to do an out-of-core implementation.

9 CONCLUSIONS

In this paper we introduced a simple algorithm to compress isosur-
face data based on the overall structure of the JBIG binary image
compression standard, and exploiting the correlation between con-
secutive layers of the volume scalar data to increase the compres-
sion rates quite significantly. The algorithm can be implemented in
out-of-core or in-core fashion. The highest compression is achieved
in the in-core version with smoothing of vertex positions and nor-
mal vectors. Despite its simplicity, this algorithm beats all the other
methods proposed so far to deal with the same problem by a factor
of at least 2−3, and more typically 10, and existing general purpose
mesh compression algorithms by higher factors.

As for future work, we envision several areas to improve com-
pression efficiency. We plan to concentrate on reducing the com-
pression bitrates of intersection points and normals by using better
prediction schemes, and simultaneously compressing multiple iso-
surfaces corresponding to different isolevels on the same volume
data. This can be used for example in medical data to simultane-
ously show different tissues rendered as semi-transparent surfaces.
We believe that even further compression gains can be achieved
when several levels are compressed jointly by exploiting the rela-
tions between the order of the isolevels.

Finally, the main limitation of our method is its computational
complexity, because although the length of the compressed bit-
stream is proportional to the number of faces in the output mesh,
the time complexity of the decoder algorithm is proportional to the
number of voxels in the grid. To remove this obstacle we plan to in-
vestigate ways to combine the ideas presented in this paper with the
alternative approaches described above based on hierarchical space
partition data structures.

10 ACKNOWLEDGEMENTS

Thanks to Andrei Khodakovsky et.al. for providing an executable
version of their polygon mesh connectivity coder [10] for compar-
ison purposes. Thanks to Alan Kalvin for useful discussions about
isosurface algorithms. Thanks to Alan Kalvin, Chris Morris, Stan-
ford University, and UNC for providing access to volume data sets.

References
[1] L.S. Chen, G.T. Herman, R.A. Reynolds, and J.K. Udupa. Surface shading in the

cuberille environment. IEEE Computer Graphics and Applications, 5(12):33–
42, 1985.

[2] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on simplified
surfaces. Computer Graphics Forum, 17(2):167–174, June 1998.

[3] M. Deering. Geometric compression. In Siggraph’95 Conference Proceedings,
pages 13–20, August 1995.

[4] S. Gibson. Constrained elastic surface nets: generating smooth surfaces from
binary segmented data. In Medical Image Computation and Computer Assisted
Interventions, Conference Proceedings, pages 888–898, 1998.

[5] S. Gumhold and W. Strasser. Real time compression of triangle mesh connectiv-
ity. In Siggraph’98 Conference Proceedings, 1998.

[6] M. Isenburg and J. Snoeyink. Face fixer: Compressing polygon meshes with
properties. In Siggraph’2000 Conference Proceedings, pages 263–270, July
2000.

[7] ITU-T T.82 Information technology - Coded representation of picture and
audio information - Progressive bi-level image compression, March 93.
http://www.itu.int.

[8] A.D. Kalvin. Segmentation and Surface-Based Modeling of Objects in Three-
Dimensional Biomedical Images. PhD thesis, New York University, New York,
March 1991.

[9] A.D. Kalvin. A survey of algorithms for constructing surfaces from 3d volume
data. Technical Report RC 17600, IBM Research Division, January 1992.

[10] A. Khodakovsky, P. Alliez, M. Desbrun, and P. Schröder. Near-optimal connec-
tivity encoding of 2-manifold polygon meshes. Geometric Models, 2002. Special
Issue on Processing of Large Polygonal Meshes (to appear).

[11] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compres-
sion. In Siggraph’2000 Conference Proceedings, pages 271–278, July 2000.

[12] A. King, D. Szymczak and J. Rossignac. Connectivity compression for irregular
quadrilateral meshes. Technical Report GIT-GVU-99-36, Georgia Tech GVU,
1999.

[13] B. Konrod and C. Gotsman. Efficient coding of non-triangular meshes. In Pro-
ceedings of Pacific Graphics, Hong-Kong, 2000.

[14] W.E. Lorensen and A.V. Cline. Marching cubes: a high resolution 3d surface
construction algorithm. ACM Computer Graphics (Siggraph Conference Pro-
ceedings), 21(4):163–196, 1987.

[15] K. M. Marks. A JBIG-ABIC compression engine for digital document process-
ing. IBM Journal of Research and Development, 42(6), 1998.

[16] T. Möller, R. Machiraju, K. Müller, and R. Yagel. A comparison of normal
estimation schemes. In IEEE Visualization’97, Conference Proceedings, pages
19–26, 1997.

[17] ISO/IEC 14496-1 Information technology - Coding of audio-visual objects, Part
2: Visual / PDAM1 (MPEG-4 v.2), mar 1999.

[18] L. Mroz and H. Hauser. Space-Efficient Boundary Representation of Volumetric
Objects. In Proceedings of the Joint Eurographics-IEEE TCVG Symposium on
Visualization (VisSym01), Ascona, Switzerland, May 2001.

[19] L. Neumann, B. Csébfalvi, A. König, and E. Gröller. Gradient estimation in
volume data using 4d linear regression. In Eurographics 2000, Conference Pro-
ceedings, pages 351–358, 2000.

[20] K. G. Nguyen and D. Saupe. Rapid high quality compression of volume data for
visualization. In Eurographics’2001, Conference Proceedings, 2001.

[21] J. Rossignac. Edgebreaker: Connectivity compression for triangular meshes.
IEEE Transactions on Visualization and Computer Graphics, 5(1):47–61,
January-March 1999.

[22] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point rendering system
for large meshes. In Siggraph’2000, Conference Proceedings, 2000.

[23] D. Salomon. Data Compression – The Complete Reference. Springer-Verlag,
1997. ISBN0-387-98280-9.

[24] D. Saupe and J.-P. Kuska. Compression of isosurfaces. In Proceedings of IEEE
Vision, Modelling and Visualization (VMV 2001), Stuttgart, Germany, November
2001.

[25] M. J. Slattery and J. L. Mitchell. The Qx-coder. IBM Journal of Research and
Development, 42(6), 1998.

[26] G. Taubin. A signal processing approach to fair surface design. In Siggraph’95
Conference Proceedings, pages 351–358, August 1995.

[27] G. Taubin. Dual mesh resampling. In Pacific Graphics 2001, Conference Pro-
ceedings, Tokyo, Japan, October 2001.

[28] G. Taubin. Linear Anisotropic Mesh Filtering. Technical Report RC-22213, IBM
Research, October 2001.

[29] G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest split com-
pression. In Siggraph’98 Conference Proceedings, pages 123–132, July 1998.

[30] G. Taubin and J. Rossignac. Geometry Compression through Topological
Surgery. ACM Transactions on Graphics, 17(2):84–115, April 1998.

[31] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics Interface
Conference Proceedings, Vancouver, June 1998.

[32] A. Van Gelder and J. Wilhelms. Topological considerations in isosurface gener-
ation. ACM Transactions on Graphics, 13(4):337–375, 1994.

[33] F. Wheeler. Arithmetic coding package. http://www.cipr.rpi.edu/wheeler/ac,
February 1996.

[34] I.H. Witten, R.M. Neal, and J.G Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30(6), June 1987.

[35] Z.J. Wood, M. Desbrun, P. Schr”oder, and D. Breen. Semi-regular mesh extrac-
tion from volumes. In IEEE Visualization 2000, Conference Proceedings, pages
275–282, October 2000.

[36] R. Yagel, D. Cohen, and A. Kaufman. Normal estimation in 3d discrete space.
The Visual Computer, pages 278–291, 1992.

[37] S.N. Yang and T.S. Wu. Compressing isosurfaces generated with marching
cubes. The Visual Computer, 18(1):54–67, 2002.

[38] X. Zhang, C. Bajaj, and W. Blanke. Scalable Isosurface Visualization of Mas-
sive Datasets on COTS-Cluster. In Proceedings of IEEE Symposium on Parallel
Visualization and Graphics, San Diego, CA, October 2001.

8


