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Short Papers

Implicit Simplicial Models for Adaptive
Curve Reconstruction

Gabriel Taubin and Remi Ronfard

Abstract—Parametric deformable models have been extensively and
very successfully used for reconstructing free-form curves and
surfaces, and for tracking nonrigid deformations, but they require
previous knowledge of the topological type of the data, and good initial
curve or surface estimates. With deformable models, it is also
computationally expensive to check for and to prevent self-
intersections while tracking deformations. The Implicit Simplicial
Models that we introduce in this paper are implicit curves .and surfaces
defined by piece-wise linear functions. This representation allows for
local deformations, control of the topological type, and prevention of
self-intersections during deformations. As a first application, we also
describe in this paper an algorithm for two-dimensional curve
reconstruction from unorganized sets of data points. The topology, the
number of connected components, and the geometry of the data are
all estimated using an adaptive space subdivision approach. The main
four components of the aigorithm are topology estimation, curve fitting,
adaptive space subdivision, and mesh relaxation.

Index Terms—Curve fitting, topology estimation, shape recovery,
geometric modeling.

+

1 INTRODUCTION

THE reconstruction of curves and surfaces from unorganized sets
of data points is an important problem in computer vision. Curves
and surfaces can be represented parametrically or implicitly, and
depending on the final application, one representation is more
suitable than the other. Since parametric curves and surfaces, such
as splines [1], allow for a high degree of local control, they are
very good for modeling free-form objects, but the topological type
of these curves and surfaces is determined by the topology of the
domain, and it is difficult to check for, and to prevent self-
intersections. The now popular deformable models [4], [6], [13]
are all parametric. There has been some recent work on recon-
structing surfaces of unknown topology [3], [8], but no new repre-
sentation is introduced to control the topology and to prevent self-
intersections during deformations.

Arbitrary topology can be achieved with implicit curves and
surfaces. The Implicit Simplicial Models that we introduce in this
paper are polygonal curves and polyhedral surfaces not repre-
sented as lists of vertices and planar faces, but defined implicitly
by piece-wise linear functions. This representation allows for local
deformations, control of the topological type, and prevention of
self-intersections during deformations. A piece-wise linear func-
tion is determined by a simplicial tessellation of its domain, and
by the values of the function at the vertices of the mesh. The func-
tion is linear in each one of the domain cells. The usual represen-
tation of a polygonal curve or polyhedral surface as a list of verti-
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ces and a list of flat faces can be recovered in time proportional to
the number of faces. Irregular meshes allow for adaptive recon-
struction algorithms, and for hierarchies of curves and surface
approximations of different resolutions.

While the topology of an implicit simplicial model is deter-
mined by the combinatorial structure of the domain mesh, and by
the signs of the values of the piece-wise linear function at the ver-
tices of the mesh, the geometry is determined by the magnitudes of
the values of the piece-wise linear function at the vertices of the
mesh. Small scale constant topology deformations can be achieved
by changing the magnitudes of the implicit function at the vertices
of the mesh keeping the signs fixed. Large scale constant topology
deformations are obtained by also deforming the underlying mesh
without inverting the orientation of the cells.

' This paper builds upon previous work on algebraic curve and
surface fitting [9], [10], [11], [12], and some ideas from [7], where
an algorithm for adaptively reconstructing piece-wise algebraic
curves and surfaces defined on triangular and tetrahedral meshes
is described.

While the reconstruction algorithm is applied only to two-
dimensional curves here, the representation is valid in any di-
mension, and the general structure of the reconstruction algo-
rithm can be generalized to higher dimension as well. However,
since results were not available at the time this paper was writ-
ten, we will discuss how to extend the reconstruction algorithm
of this paper to surfaces, and how to track deformations, in fu-
ture reports.

2 IMPLICIT SIMPLICIAL CURVES

The data structure commonly used to represent a simplicial curve
is a pair of lists, a list of vertices, and a list of straight line seg-
ments. This representation is good for rendering the curve in time
proportional to the number of segments, but it is not very good for
checking for, least for imposing, topological or geometric con-
straints. Even if we start with a valid simplicial curve, deforma-
tions can introduce self-intersections, and there is no simple way
to check for them. A straightforward check for self-intersections
requires time proportional to the square of the number of seg-
ments. The main problem with this representation is that the con-
ditions for a set of line segments to define a valid simplicial curve
are global.

An implicit simplicial curve is the set of zeros of a piece-wise
linear function of two variables, which is defined by a planar tri-
angular mesh and the values of the function at the vertices of the
mesh. Thus, we will represent an implicit simplicial curve as a set

of three lists C = {V, T, F}. A list of vertices V = {”1/ s vnv}, a list
of triangles T = {tl, e tnT}, and a list of function values at the

vertices of the mesh F = {Fl, vees an}. Since we will also need

later on an explicit representation for the edges of the mesh, we
will write £ = {V, E, T} for the domain mesh, where

E=1ey, ey enE} is the list of edges. The piece-wise linear function

defining the implicit simplicial curve is

nv
f=YEx =FX, (2.1)
i=1
t
where F is seen as a row vector, X = {xl, xnv} , and x; is the

unique piece-wise linear function subordinated to the mesh X
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which satisfies the following equation

w(o)={0 & 135

(@) - (b) ()
Fig. 1. Singular cases. (a): function is zero at one vertex. (b): Fune-
tion is zero on three edges. (c): Function is zero on two neighboring
triangles. .

To prevent singular cases, such as those shown in Fig. 1, we
will constrain the values of the piece-wise linear function at the
vertices of the mesh to be non-zero. We will also require the do-
main mesh X to be positively oriented. A mesh X = {V, E, T} is
positively oriented if all the determinants

1 1 1
4 |V¢' =101 Vi Y|
Vip U2 Ugs

associated with the triangles ¢ = {v, 7 v} of the mesh, are positive,
where v, ,, v, , are the coordinates of the vertex v; of the mesh. Note
that if the order of the vertices is interchanged in a triangle
t= {vj, v vk} the sign of the determinant | V, | changes.

(@) (b) (@)
Fig. 2. Topology preserving deformations. (a): Original implicit sim-
plicial curve. (b): Deformed mesh with constant external boundary. {c}:
Invalid mesh deformation can produce self-intersections.

Topology preserving deformations of a simplicial implicit
curve are obtained automatically by deforming the domain mesh
maintaining its orientation, warping the space around the curve,
and eventually changing the magnitudes of the function values at
the vertices of the mesh, but not their signs. If a mesh is deformed
preserving its orientation, the outside boundary of the mesh might
change shape, but preserves its topology. In our reconstruction
algorithms we will impose a stronger constraint. We will keep the
. outside boundary of the mesh constant.

Once the mesh X is fixed, the topology of an implicit simplicial
curve is fully determined by the signs of the piece-wise linear
function f at the vertices of the mesh, {cr], s O'nv}, o,=sign(F) e
{~1, 1}, while the geometry of the curve is determined by the magni-
£l

tudes of the same function values {lFll, woor By,
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3 AN ALGORITHM FOR CURVE RECONSTRUCTION

In this section we describe an algorithm to reconstruct an implicit .
simplicial curve from an unorganized set of points in the plane

D= {Pu . an}. The only assumption is that the data points

belong to, or are close to, a non-singular curve (without self-
intersections), and are roghly uniformly distributed along the
curve. The topology and the number of connected components are
unknown in advance, and estimated by the algorithm. The result
is a triangular mesh covering a neighborhood of the data set, and
a regular piece-wise linear function represented by jts values at
the vertices of the mesh. Fig. 3 shows the global structure of the
algorithm, and Fig. 4 shows typical examples of curves recon-
structed with this algorithm. \

procedure FitImplicitSimplicialCurve
InitializeMesh
for level «— 0 to max-level step 1 do
EstimateTopology
EstimateGeometry
if MaximumFittingError < e
return
else
AdaptivelySubdivideMesh
RelaxMesh -

Fig. 3. Global structure of the implicit simplicial curve reconstruction
algerithm.

{a) (b) ()
Fig. 4. Multiply connected objects and simplicial curve reconstruction
of boundaries, using the algorithm of Section 3—(a): data set; (b):
reconstructed implicit simplicial curve; (c): details of a and b.

The algorithm follows a strict top-down approach, minimizirig
the amount of storage required. A very simple mesh is used at the
beginning of the algorithm covering a region containing all the
data ‘points. In our experiments, we have used triangulated
squares and regular hexagons as initial meshes, and in general, the
hexagonal geometries produce better results. However, the initial
mesh should be tailored to the application. Once a mesh is fixed,
an implicit simplicial curve subordinated to the current mesh is
reconstructed from the data by a least squares fitting algorithm, by
first estimating the topology, and then the geometry of the curve. .
After the curve fitting step, the maximum fitting error within each
triangle is measured. If all the triangles meet the prespecified tol-
erance, the algorithm finishes. Otherwise, the triangles where the
tolerance is not met, are subdivided, along with a few other that
are necessary to maintain a valid mesh. The mesh is then relaxed
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to prevent the vertices of the subdivided mesh to be too close to
the data, and to improve the aspect ratio of the triangles. This step
is essential for the success of the algorithm. Once this new mesh is
fixed, the loop is traversed again, until the tolerance test is satis-
fied by all triangles.

Now we proceed to describe in detail the main building
blocks of the curve reconstruction algorithm: implicit curve fit-
ting, topology estimation, testing, adaptive subdivision, and
mesh relaxation.

3.1 Implicit Curve Fitting
We formulate this step of the algorithm building upon previous
work on algebraic curve and surface fitting [9], [10], [11], [12].
Given a finite set of two dimensional data points

D= {pl, et Puy }, we cast the problem of fitting an implicit curve

Z(f) = {p: f (p) = 0} to the data set D as globally minimizing the
mean square distance from the data points to the curve Z( f), as
a function of the vector of parameters F, the values of the piece-
wise linear function on the vertices of the mesh. For a piece-wise
linear function, the mean square distance has the following ex-
plicit expression

AI(F) =

T iy
ter "D peby;

o, £ _y o EMFE @.1)

Vi) 7 "o ENE

where D, is the subset of data points that belong to the triangle ¢ =

(v, vy Ak np, is the number of points in D, f, (p) = F; x; (p) +
Fi x; (p) + Fyx, (p) is the restriction of f (p) to the triangle ¢, F = (F, F].,
Fk)’ Xt = (x,'r x]'/ xk)r

1 ¢ 1. ¢
M, =— > [X,(p)X /N, =— ) |DX,(p)DX, ,
£ g, peth[ () t(P)] =, pED[[ (p) t(p)] 32)
and DX, is the Jacobian of X,

In fact, since X, is a linear function, its Jacobian is constant, and

the matrix N, is only a function of the vertices of the triangle, and
not a function of the data points inside it.

3.2 Topology Estimation

In the absence of prior knowledge about the solution, it is difficult
to minimize (3.1), because the system to be solved becomes sin-
gular when a nodal value F; approaches zero. On the other hand,
if we can estimate the signs of the nodal values, i.e., the topology
of the solution, we can minimize (3.1) locally, with a program
such as LBFGS [5], which is designed for large unconstrained
nonlinear minimization.

The piece-wise linear function determined by the coefficients F,
constitutes an approximate inside-outside function for the data (up
to a global sign inversion). When an inside-outside function is
directly available from the data, the topology estimation step is
therefore not necessary. In all other cases, we can still estimate the
inside-outside function, with combinatorial optimization methods.
We do this by independently fitting straight lines in all non-empty
triangles, and counting sign changes. More specifically, for each
triangle ¢ = {o, 0y v}, i.e., such that the set D, is not empty, we fita

straight line to the data set D, in the least squares sense by mini-
mizing the local mean square error

LML,
LNL '

where M, and N, are the matrices of (3.2), obtaining its mini-

mum value, the local error of fit €, and its minimizer L,= (L, , L, o

L,,). This is done for each triangle independently of the data in
other triangles. This can be done in closed form and involves
solving a 2 x 2 eigenvalue problem. In general, the three compo-

nents of L, are nonzero. Let us denote by o,

1ir O

4
Ly L Lyie, o,is equal to 1 or —1 depending on whether L, ;
is positive or negative.

A good estimate for the signs of the global coefficients F,; can
then be obtained by minimizing a sum over all triangles:

Az(F) =

1
- 2 (Gf,iat,jFiFj +0,,0,FEF + Gt,jat,kl:ij)[

e leT,t:{vl 0 ,vk}

o, the signs of

Emax ~ & (33)
€

‘max ~ €min

constraining the function values at the vertices of the mesh to be
either -1 or 1

E, .., F, e{-11}. (34)

Expression (3.3) involves a measure of the goodness-of-fit for

each triangle, where ¢, = max{etl, e & } and a similar defi-
T

nition for €, . Thus, the global coefficients F; change signs only
when there is enough evidence from the local fits in their neigh-
borhood. Of course, we also have to define a goodness of fit and a
fitting vector L, for each empty triangle, because otherwise the
problem could be underconstrained. For an empty triangle ¢ we

set L, = {1, 1, 1} with a high confidence value ¢, = Compty” By re-
arranging terms, we obtain
8,(F) = X H,EE (35

ecE
with the sum ranging over all the edges ¢ = {v;, v} of the triangu-
lation. The edge weight H, corresponding to the edge e={vl.,v].} is
easily obtained from (3.3)

€ —€
- max +
H, = 2 at,ial,f[ )

froet €max ™ €min

(3.6)

with the sum extended over all the triangles that contain e as an
edge, The minimization of the quadratic expression (3.5) in {-1, 1}
is exactly the Ising model, for which simulated annealing schemes
are well documented. We have found that simulated annealing
based on (3.5) gives good results. This approximation is also
faster, and more robust, than the more obvious choice of using
(3.1) directly at this stage. Some results of the topology estimation
step are presented in Figs. 5 and 6.

d

Fig. 5. Example of topology estimation step.
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3.3 Testing

Testing the quality of the fit is necessary to determine when the
algorithm should stop, and otherwise, which triangles need to be
subdivided. After the minimization of (3.1) for the current mesh,
for each triangle t we compute

Ao

EE rel

If 6, > J we mark the triangle for subdivision. If no triangle is
marked, the algorithm stops. Otherwise we continue. In practice,
this test is generally sufficient, although problems occur when the
number of data points inside a triangle becomes too small, usually
around high curvature regions, or in cases of sparse or very noisy
data points.

| B

Fig. 6. Example of topology estimation step.

3.4 Adaptive Subdivision

At this point we have a valid triangular mesh with some triangles
marked for subdivision. It turns out that to maintain a valid mesh,
other unmarked triangles may have to be subdivided as well. A
simple method to automate the process involves three steps [2],
[14]. In the first step the vertices of each triangle marked for sub-
division are marked. In the second step a new vertex is created at
the midpoint of each edge which has the two vertices marked. In
the third step, illustrated in Fig. 7, the triangles are subdivided
according to how many vertices are marked. A triangle with the
three vertices marked is subdivided into four triangles, a triangle
with two vertices marked is subdivided into two triangles, and
triangles with one or no marked vertices are not subdivided.

@ (b)
Fig. 7. Subdivision rules. Marked vertices are represented with a cir-
cle. (a): Mesh with some vertices marked. (b): Mesh a after subdivi-
sion.

3.5 Mesh Relaxation

Since the desired final result is a regular implicit simplicial curve,

we cannot allow the function to be close to zero at any vertex of
the triangulation. If a vertex is allowed to get close to the data
points, the function value at that vertex will tend to be small with
respect to the values a the other vertices, or even zero. Contrary to
what is done in other related algorithms based on triangular
meshes, where the mesh is relaxed by pulling the vertices close to
the data points [7], our mesh relaxation process pushes the vertices
away from the data. It is not only that we want the vertices to be far
away from the data, but we also want the data inside each triangle
to be well approximated by a straight line connecting the mid-
points of two edges. At least this is approximately what happens .
when the algorithm stops, but we would like to try to impose this
condition at each level of subdivision. So, the data has to pull the
vertices away, but at the same time, for each triangle the distance
from the three vertices to the data must be as equal as possible.
Also, the mesh has to remain a valid mesh, and the triangles have
to remain as equilateral as possible, because otherwise, the local
nonlinear minimization algorithm gets plagued with all sort of
numerical problems. ]

We have decided to base our mesh relaxation algorithm on an
energy minimization scheme, and instead of solving ordinary
differential equations, we perform an approximate minimization
based on gradient descent. o

The mesh energy U = x;, U, + &; U, has two components, the
data energy Uy, and the edge energy U,. The two constants &, and
K must be positive. In our current implementation &, = 0.25 and
K,=1.0.

The data energy pushes the vertices as far away and equidis-
tantly as possible from data points in each triangle. The edge en-
ergy pulls vertices together and tends to make equilateral trian-
gles, which regularizes the mesh relaxation process. In addition,
we constrain the boundary of the mesh to remain constant. This
can be achieved by fixing the boundary vertices in their initial
positions, and allowing the vertices laying on the boundary edges
to move only along the edges they belong to. All of this can be
done with linear constraints on some of the vertices. If a vertex v
of the mesh belongs fo a boundary edge e, then v must satisfy the
linear equation of the line containing the edge C,(v) = 0. Since a
boundary vertex belongs to two non-parallel edges, making it
satisfy the two constraints is equivalent to keeping it fixed.

The data energy is defined as follows

Up = 922(?’(”{) - ¢(Uj))2'

e€E

(3.7

with the inner sum extended over. all the edges e = {v,, vj}, and
where :

¢(vi) = : | !

;z;t:vi <t p;eD; W’ (3.8 ]

with the sum extended over all the triangles that contain v, as-a
vertex, and all the data points inside these triangles. The constant
pis the diameter of the mesh, and the reason to include the factor

p2 here is to make the data energy scale invariant. Scale invariance
is important only to be able to define the mesh energy as a linear
combination of the data energy and the edge energy, independ-
ently of the scale of the problem.

The edge energy is defined as follows

e gl

eekE

(3.9)

where e = {7,, vj}, and vy, ..., V,, are positive constants defined as

follows. The degree of a vertex is the number of edges incident to
the vertex, or equivalenily, the number of vertices connected to the



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 3, MARCH 1996 325

former one through an edge of the triangulation. The mean degree
of a mesh is the mean value of the degrees of its vertices. In our

implementation we have defined the constant v, as the ratio of the
degree of the vertex v; over the mean degree of the mesh, but other
values provide similar results. For example, making v;= 1 for all i

is also a good choice. The factor p2 is included in the denominator
to make the edge energy scale invariant.

Special care should be taken in choosing the energy minimiza-
tion algorithm, because since each time the vertices are moved, the
data set has to be repartitioned, evaluating the energy function is
potentially expensive. In principle, after a mesh deformation each
point must be tested against each triangle for membership, but for
small deformations each data point most likely will remain in the
same triangle, or will move to one of the three neighbors.

4 CONCLUSIONS

We have introduced implicit simplicial models as a new repre-
sentation for piece-wise linear curves and surfaces. We have
shown that this new representation allows for a complete and
efficient control of the topology of the curve or surface, and has
most of the good properties of more traditional deformable mod-
els, and algebraic curves and surfaces. Implicit simplicial models
can be used to model free-form curves and surfaces, but at the
same time they provide an inside-outside function defined in a
large neighborhood of the curve or surface. This inside-outside
function can be constructed as an approximation to the distance
from an arbitrary point to the curve or surface. At the same time,
implicit simplicial curves and surfaces have explicit local
parameterizations, which are good for other purposes. As a first
application, we have described a two dimensional curve recon-
struction algorithm from unorganized data sets which can be ex-
tended with almost no modification to an algorithm for surface
reconstruction. We believe that a number of graphics and vision
problems can be solved either more robustly, more generally, or
both using implicial simplicial models, as for example surface
reconstruction, tracking of surface deformations and adaptive
isosurface construction, to mention just a few applications that we
intend to demonstrate in future reports.
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