Real-Time Median Filtering for Embedded Smart Cameras

Yong Zhao
Brown University
Yong_Zhao@brown.edu

IMAGE CAPTURE & STREAMING

Gabriel Taubin
Brown University
taubin@brown.edu

OBJECT DETECTION & TRACKING USER INTERFACE

CerfCube

Visualizer Process

100BaseT
switch

3D TRACKING Server Process =

Figure 1: System architecture of our proof-of-concept Visual Sensor Network (VSN) built with off-the-shelf IP cameras and embedded
single-board-computers (SBCs) as image processors which communicate over common ethernet switch fabric amongst themselves and
with the server. Each SBC serves as image processor for one IP camera. The algorithm described in this paper runs in the SBCs as part of
an indoors person detection and tracking application. Results presented include the overhead incurred by each SBC decoding JPEG frames

sent by a corresponding IP camera.

Abstract

This paper describes a new median filter algorithm opti-
mized for real-time performance in smart cameras with em-
bedded processors. As in the JPEG and MPEG compres-
sion algorithms, each frame of the video stream is first
partitioned into a regular array of non-overlapping square
blocks. The median value for each block is then computed
and compared with corresponding values of neighboring
blocks. If the magnitude of the difference does not exceed
a threshold, the output value for all the pixels in the block
is set to the median value. Otherwise, the output value for
each pixel in the block is computed as the median value
within a window of the same size centered at this pixel. We
describe variations for binary and grayscale images. The al-
gorithm has been implemented and tested in an embedded
single-board-computer (SBC) with no hardware accelera-
tion, as a component of a Visual Sensor Network (VSN)
system for real-time indoor person detection and tracking.
In this system, where the SBCs have the additional over-
head of decoding JPEG frames from IP cameras, our new
algorithm is 5 to 20 times faster than the traditional algo-
rithms for typical window sizes. We expect further speed-
ups to frame-rate performance on smart cameras with em-
bedded image sensors and reconfigurable hardware.

1 Introduction

The two dimensional median filter has been extensively
used for smoothing operations in image processing since
its introduction by Tukey [11]. The result of applying the
median filter to an N x N image [usinga W x W win-
dow, where W = 2w+1 is an odd number, is a new image
M of the same size[9]. The output pixel value M, j] is
computed as the median of all the input values within the
W x W window centered at the pixel I[i, j]:

MTi, j] = median{I[a,b] : |Ja —i] <w A |b—j| < w} .

Computing this value requires sorting the input pixel inten-
sity values within the window (the filter kernel), and this
has to be done for each pixel in the image, resulting in high
computational cost. Compared with a linear averaging fil-
ter, which evenly diffuses impulsive noise to neighboring
pixels, the median filter removes impulsive noise by ignor-
ing it. Consequently, median filtering is hardly affected by
impulsive noise smaller than the filter kernel.

The algorithm described in this paper was developed and
implemented as a basic low-level operation for the proof-of-
concept Visual Sensor Network (VSN) described in Figure
1. This platform was used to implement a real-time indoor
person detection and tracking application. Our long term
goal is to build large scale VSNs for real-time operations
with very large number of cameras (1000s). For this kind
of scalability, bandwidth constraints requires the cameras to

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

be smart, i.e., to host the most high data rate intensive im-
age processing operations. Figure 7 shows the architecture
and current state of our first smart camera design, which
is not yet operational. The experimental results reported
in this paper are based on the same SBC platform, but the
image capture is simulated using off-the-shelf IP cameras,
which imposes on the SBCs the overhead of communicat-
ing with their corresponding camera over the same network
used to communicate with the server, and decoding com-
pressed JPEG frames before applying the new median filter
algorithm. All of this overhead is included in the results.

The paper is organized as follows. In Section 2 we de-
scribe the new fast median filter algorithm in detail, first for
binary images, and then for graylevel images. In Section
3 we provide brief descriptions of prior related work, and
comparisons with our new approach. In Section 4 we de-
scribe the platform where we performed our experiments.
In Section 5 we describe our experimental results. Finally,
in section 6 we end the paper with conclusive remarks and
summary.

2 The Algorithm

We first explain the new algorithm for binary images, and
then show how it has to be modified for graylevel images.

2.1 Fast Binary Median Filter

Binary image smoothing is used widely in many applica-
tions. For example, in most object tracking applications
foreground objects are detected by comparing each frame
with a background model. Each pixel in the image is clas-
sified as foreground or background. Various kinds of back-
ground statistical models have been proposed because plain
differencing is not robust enough. However, noise can not
be avoided mainly due to variations in illumination or back-
ground/foreground characteristics, etc. Therefore, for most
approaches the resulting images need to be smoothed prior
to further processing.

Figure 2 shows an example of using our new fast me-
dian filter algorithm to smooth a binary image in a person
tracking application. Image (a) is a frame captured from a
video camera, showing that a man is walking in the room.
Image (b) is the binary image obtained by comparing (a)
with the background model. The value of each pixel (black
or white) indicates whether it belongs to the background or
the foreground. As can be seen, there is too much noise
and too many fuzzy edges in this image. In order to remove
this ”salt and pepper” noise and smooth the edges of the
foreground region, we apply median filtering on this image.
Image (c) shows the output of the traditional median filter.

Our algorithm first divides the binary image (b) into a
regular grid of non-overlapping square blocks the size of

g h

Figure 2: Fast binary median filter. (a) Original image captured
by the sensor; (b) Noisy foreground segmentation obtained by
comparing the input image with the background model; (c) Binary
image smoothed with traditional median filter. (d) Noisy image
partitioned into non-overlapping blocks (big blocks shown for il-
lustration purposes; actual blocks are smaller); (¢) Low resolution
foreground image generated by block approximation; (f) Detected
edge blocks; (g) Binary image smoothed with the algorithm de-
scribed in this paper; (h) Object of interest segmented out from
input image.

the kernel window of median filter. Image (d) shows the
divided image (for illustration purposes the blocks shown in
image (d) are much bigger than the ones actually used). The
median value of each block is then computed, and assigned
to all the pixels in the block. The result of this step is shown
in image (e). That is, the algorithm evaluates the traditional
median filtering only at the center points of each block and
these values are replicated to the rest of the pixels in the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

f—

LTraditional LNew

Figure 3: Different kernel size is needed to remove the same size
noise by traditional median filter and new approach.

block. As can be seen in image (e), the noise is successfully
removed by this step, but details on the region edges are
lost. In the following step the algorithm recovers the lost
details.

To decide which blocks require additional boundary de-
tails, the median value assigned to each block in image (e)
is compared with the corresponding values assigned to the
eight-connected neighboring blocks. If not all of these vales
coincide, the central block is labeled as an edge block. Edge
blocks are blocks which contain both background and fore-
ground pixels (one of them dominates the whole block af-
ter the approximation). Image (f) shows the result of this
step. After all the edge blocks are found, the traditional
median filter algorithm is evaluated on each pixels of image
(b) belonging to an edge block, and the corresponding out-
put pixel is set to the computed median value. This means
that overall, the median value is computed on all the block
centers, and on all the edge block pixels. Image (g) shows
the final result of fast noise removal and edge smoothing,
and image (h) shows the result of segmenting image (a) ac-
cording to the foreground classification of image (g).

2.2 Algorithm Analysis

Comparing images (c) and (g) in Figure 2, we find that the
noise removal and edge smoothing quality of the new ap-
proach are better than those obtained using the traditional
medial filter algorithm with the same filter kernel size. This
phenomenon can be easily explained by the following ex-
ample:

As illustrated in Figure 3-(a), in order to entirely re-
move a round-shaped noise disk of radius R, the minimum
size of kernel window needed iS L iiona X Loradgiconas Where
Ligion = (27R?)Y? ~ 2.506 R, in the traditional me-
dian filter algorithm. While for the new approach, the min-
imum filter kernel size depends on the position of the noise
disk. The best case is when the center of the noise disk is
at the vertex of blocks. In this case L., = (0.257R?)'/? ~
1.253 R. The worse case is when the center of the noise
disk is at the center of block. In this case L,., = Liuiion-
In general, in new approach a smaller filter kernel size is

W (pixels) 3 5 7 9 11 | 13 | 15
o (%) 04 | 18127 (32|3.6]45]|63
0 (%) 115 | 58 | 47 | 44 |44 |51 |67

Table 1: Computational cost comparison of two median filters.

needed to remove the noise features of same dimension. In
other words, with the same filter kernel size, the the new
approach has stronger image smoothing power than the tra-
ditional algorithm.

Our primary concern for real-time embedded applica-
tions is to reduce the computational cost. The computa-
tional cost in the traditional median filter algorithm is de-
termined by the image size and kernel window size. For
example, applying median filtering with a W x W window
toa N x N digital image involves N2 median value calcu-
lations; each median value calculation involves data sorting
for W2 values. The temporal complexity of the traditional
median filtering: Thgiom = O(N2W log(W)).

The computational cost of the new median filter algo-
rithm with the same kernel window size on the same image
is much lower because we only evaluate the median values
on the center pixels of every block, and on all the pixels in
edge blocks. The total temporal complexity of new median
filtering is:

N2
TNew =0 (<W + Aedgehkmk,> w 10g(W))

Where A0 denotes the area of all the edge blocks in
pixels.

In order to show how fast the new approach is, we use
0 to denote the computational cost ratio of the two median
filters:

Aedgeblocks _ 1 o

W2 100

TNew 1 +

0 = = —
TTradilinnul W2 N2

Where o denotes the percentage of edge blocks area in the
whole image area. The value o depends on the noise level,
size and shape of foreground region, and the size of kernel
window.

We should notice that for binary image, the data sort-
ing computation is much cheaper than that of intensity
image case. And the temporal complexity is no longer
O(nlog(n)). But the computational cost ratio 6 of two me-
dian filters is the same. For the image showed in Figure
2, the value o and the corresponding 6 for different S are
displayed in Table 1.

We see that when W = 5, the area of “edge blocks”
is just about 1.8% of the whole image area for the case
showed in Figure 3. Therefore the computational cost of
new approach is expected to be only about 5.8% of that of
traditional one.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

a b

Figure 4: Example of block approximation. (a). Simple approxi-
mation of four adjacent 5 x 5 blocks. In each block, median values
of only the central pixels (marked by the circle) are computed and
shared by all non-central pixels. (b). Smoother approximation
using bilinear interpolation algorithm with the computed median
value for central pixels.

2.3 Fast Intensity Median Filter

The basic idea of the new median filter described for the
binary case could be easily extended to the graylevel image
case. The only difference is at block approximation step.

In the binary case we simply approximate the median fil-
ter algorithm results of non-center pixels within each block,
with the values assigned to the center pixel of the same
block.

In the graylevel image case this simple approximation
does not work well because it produces block boundary ar-
tifacts. This problem is illustrated in Figure 4-(a). In order
to get a smoother approximation, we smoothly interpolate
values from median values of adjacent blocks, as shown in
Figure 4-(b). We have tried some commonly-used continu-
ous interpolation approaches, such as nearest neighbor, bi-
linear, spline, cubic and sinc interpolation. The smoothness
performances produced by these approaches do not differ
too much, but their computational costs vary dramatically.
Because what we need is a fast approximation to avoid com-
puting the median value on every pixel, we have chosen bi-
linear interpolation as our block approximation step.

We then use a scheme similar to the one used in the bi-
nary case. Median values of adjacent blocks are compared,
and the magnitudes of the differences are thresholded to de-
tect the edge blocks. For edge blocks, the median value is
computed for every pixel in the block. For the other blocks,
the bilinear interpolation is used to set the output pixels.
The results from two steps are combined and then we have
the final result of well-smoothed image.

Figure 5 illustrates the steps of our fast median filter for
graylevel images. 25% salt and pepper noise is added to
input image (a), resulting in image (b). Image (c) shows
the output from the traditional median filter with a 3 x 3
window. Image (d) shows the edge blocks detected in (b).
Image (e) is the output of our fast median filter witha 3 x 3
window. When the noise level is increased to 40% in image
(f), the traditional algorithm with a 5 x 5 window outputs

image (g), and our new algorithm outputs image (h).

The example presented in Figure 5 shows that, in addi-
tion to the significant speedup, the new median filter al-
gorithm produces very good quality output images in the
case of intensity image. With the same size of filter ker-
nel, the new approach delivers better noise removal quality
than the traditional median filter algorithm, especially when
the noise is dense. Additionally, in the above example, the
computational cost ratio 6 (defined in Section 3.2) is about
15%, which means that the new approach is expected to be
at least 6 times computationally more efficient that the tra-
dition algorithm.

3 Related Work

Since its introduction, median filtering has been extensively
used to remove impulsive salt and pepper noise from im-
ages. It is a more robust method than the traditional linear
filter because it preserves sharp edges.

One of the major flaws of the median filter is that it
is very computationally expensive when the filter kernel
is big. The temporal complexity of a straightforward se-
rial computation of applying median filteringona N x N
digital image with W x W kernel is O(N?W?). This
can reduced to O(N2W log(W)) by Quicksort [1]. A fast
two-dimensional median filtering algorithm developed by
Huang, Yang and Tang [4] provides a O(N2W) perfor-
mance. A separable median filter introduced by Naren-
dra [8] and latter improved by Basu and Brown [2] takes
only O(N?log W) time. Various kinds of hardware solu-
tions using configurable logic or a pyramid computer have
been introduced to achieve real-time performance [10, 3, 7].
Dedicated hardware does provide high speed but it is too
expensive and rarely available in most application systems.

Note that all these previous works have concentrated on
how to accelerate the computing of the median number for
every pixel. The focus of the approach presented in this
paper is on how to decrease the number of median number
computations and still achieve equally good smoothing re-
sults. As mentioned in section 2.2, for most images only
0.4 6.3% the median number computations performed by
other algorithms are evaluated by our algorithm. Our ap-
proach is complementary those listed above, and we plan
to incorporate some of these ideas in future versions of our
algorithm to achieve further speedups.

4 Platform

As mentioned in Section 1, and illustrated in Figure 1, we
constructed a VSN for real-time indoor people detection
and tracking. In this first system We used CerfCube405SEP
SBCs powered by IBM PowerPC System-on-Chip (SoC)
processors [6] as image processors, and D-Link DCS-900

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

Figure 5: Example of fast intensity median filtering. (a). Original
grayscale image. (b). Image imposed with 25% impulsive noise.
(c). Smoothed image by traditional image. (d) "Edge blocks” de-
tected in new approach; (e) Smoothed image by new approach;
(f) Image imposed with 40% impulsive noise. (g). Smoothed im-
age of (f) by traditional image; (h) Smoothed image of (f) by new
approach.

IP cameras for image capture [5]. The common 100BaseT
Ethernet switch fabric existing in the building was used for
communication between each camera and its correspond-
ing image processing SBC, and between each SBC and the
server. This approach reduces the bandwidth requirements,
distributes the computation, and allows the server to con-
centrate on other jobs, such as calibration, synchronization,
information integration and visualization. Performing all
the computation at the server would have been impossible

Smart Camera

Image Pracessor Board CPU Board

IBM PowerPC 32bit
Reconfigurable 226Mhz GNU/Linux
Hardware Ll Pracessor

Sensor Board

cMos
Image
Sensor

—_— SORAM 32 MB
SDRAM “auzm;
|
LAN
a

Figure 6: (a). Architecture of embedded smart camera; (b). Pic-
ture of our current camera hardware. Each smart camera consists
of 3 functional PCB boards: a sensor board, a reconfigurable hard-
ware image processor board and a CPU board.

with this architecture, both in terms of computation and
communications. With this structure only small amounts
of data generated by the embedded image processors need
be transferred over the network to the server. It is then pos-
sible to construct a real-time, large-scale visual sensor net-
work with the compact, power-saving embedded cameras,
and one regular PC working as the server.

Figure 6 illustrates the smart camera we will use in our
next VSN system. The high level system architecture is
showed in (a), and pictures of the three circuit which con-
stitute this smart camera are shown in (b). This embedded
camera has been designed and is currently under assembly
and debugging. In order to develop and test the image pro-
cessing software, such as the algorithm presented in this
paper, we implemented the image capture device driver for
the SBC emulating the hardware platform that we are build-
ing. A mass-market IP camera was used to capture images,
which were transmitted to the SBC over the Ethernet in-
terface. Once a frame is received, decoded, and in local
memory, the SBC runs the image processing operations at
the same speed it will on our future smart camera. The only
difference is that the raw data in JPEG format is transferred
from the sensors to the image processors by Ethernet in-
stead of inter-PCBs connections, and therefore the image
processors has the overhead of communication and decom-
pressing the JPEG data data before processing it.

5 Experimental Results

The main purpose of our new median filter algorithm is to
overcome the high computational cost of the traditional ap-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

1800~

QNew Approach
1600+ @ Traditional Approach

1400

1200

1000

800+

600

400+

Time Consumption (ms)

200+

Kemmnel Size (pixels)

Figure 7: Time consumption of two approaches in binary case on
embedded system.

Kernel Size 3 5 7 9 11

New Approach 35 | 47 72 149 189

Traditional Approach | 323 | 862 | 1614 | 3426 | 4195

Table 2: Time consumption of two approaches in intensity case
(unit: ms).

proach. In previous sections we demonstrated that the qual-
ity of the images produced with the new approach is equal
or better than with of traditional approach, especially when
the noise level is high. The algorithm analysis in provides
reasons for the improvement of smoothing quality and re-
duction of computational cost. In this section, we present
speed test results for the new algorithm running in the VSN
system described above. We first tested the speed perfor-
mance of traditional and new median filters for binary im-
ages. The median filtering works as foreground smoother
in this application. The time costs of the traditional median
filter vs. the new algorithm are displayed in Figure 7.

On our current emulating embedded cameras, the objects
detection and tracking application runs at 8 to 10 frames per
second in QVGA mode, which is an encouraging result. We
expect a much higher frame rate, probably 30 fps, when we
remove the overhead associated with interfacing with the IP
cameras over the common network, and run the algorithm
in our new embedded cameras after the assembly and de-
bugging work is finished. This is so because in that case,
the video data will be transferred from the image sensor to
the processor core through a private dedicated inter-PCB
connections instead of the Ethernet, and no decompression
by the image processor will be required.

We also tested the fast intensity median filtering on some
1600 x 1200 resolution images on a regular PC running at
3.2 GHz. The average comparison results are listed in Table
2.

6 Conclusion and Discussion

In this paper we propose a new high-speed median filtering
for real-time embedded applications. The main feature of
this new approach is its much lower computational cost. In
addition, it provides better smoothing quality than the tra-
ditional approach.

We discussed how to apply the new approach both to bi-
nary and graylevel images, and we get very good experi-
mental results. Further investigation could be done in how
to apply the same idea on color images, which is a vector
median filtering problem. However, the higher discrimina-
tion of color information might generate too high § value
(edge block area ratio) to achieve satisfactory speed perfor-
mance.

7 Acknowledgements

To be written after the review period.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Read-
ing, MA, 1974.

[2] A. Basu and M. Brown. Algorithms and hardware for ef-
ficient image smoothing. Computer Vision, Graphics and
Image Processing, 40:131-146, February 1987.

[3] J. G. R. Delva, A. M. Reza, and R. D. Turney. Fpga im-
plementation of a nonlinear two dimensional fuzzy filter.
In Proceedings of the International Conference on ASSP,
Phoenix, Arizona, March 1999.

[4] T. S. Huang, G.Y. Yang, and G. Y. Tang. A fast two dimen-
sional median filtering algorithm. In /IEEE Transaction on
ASSP, volume ASSP-27, pages 13—18, February 1979.

[5] D-Link Inc. Dcs-900 ip camera. http://www.dlink.
com.

[6] Intrinsyc Inc. Cerfcube 405ep embedded single board com-
puter. http://www. intrinsyc.com.

[7] G. Louverdis, I. Andreadis, and A. Gasterato. A new content
based median filter. In EUSIPCO 2004, Vienna, Austria,
September 2004.

[8] P.M. Narendra. A separable median filter for image noise
smoothing. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 3(1):20-29, 1981.

[9] S. Ranka and S. Sahni. Efficient serial and parallel algo-
rithms for median filtering. In Proceedings of the Inter-
national Conference on Parallel Processing, pages 56—62,
1989.

[10] S. L. Tanimoto. Algorithms for median filtering of images
on a pyramid machine. In M.J.B. Duff, editor, Computing
Structures for Image Processing. Academic Press, London,
1983.

[11] J.W. Tukey. Exploratory Data Analysis (preliminary ed.).
Reading, MA: Addison-Wesley, 1971.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

