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1. Introduction

Estimating depth from stereo is a classical computer vision
problem, which has received significant attention since the early
days. Recovering 3D information from a pair of stereo camera has
been a popular topic because the additional 3D information provided
by this technology contains significantly more information than 2D
information produced by traditional cameras. Some believe that this
technology will fundamentally revolutionize the computer vision
signal processing pipeline, as well as how future cameras will be built.

However, this 2D to 3D evolution has always been facing many
challenges, which can be grouped into two main categories: accuracy
and efficiency. Accuracy becomes an important concern in applica-
tions such as precise 3D surface modeling, especially when dealing
with object surfaces with complex reflectance behavior, rich geomet-
ric structure, significant amount of occlusion and poor texture.
Efficiency is the main concern when the stereo system is employed
in real-time applications such as robot navigation, video surveillance,
and interactive user interfaces.

Unfortunately these challenges often conflict with each other: in
order to improve the quality of stereo matching, people usually cast
the problem as a global optimization problem, which results in high
computation cost and poor efficiency. On the other hand, most
efficient stereo matching algorithms are based on only local
information, which leads to poor accuracy under some difficult
situations.
The focus of our work is to provide real-time high resolution stereo
for applications in which only foreground moving objects are of
interest, such as motion capture, object tracking, recognition and
identification in a visual sensor network (VSN) scenario. These
applications usually have some special performance constraints:
first, being able to estimate depth in real-time speed is essential for
the whole system to be able to work in real-time; second, high
resolution is very important for applications which have large
working volumes, and very crowded scenes, where attention to detail
information is necessary; third, fine scanning range (maximum
disparity) is necessary for applications which have to deal with big
depth of view; after all, stereo is usually only one part of a real-time
computer vision processing pipeline. In order to have the whole
pipeline works in real-time, a faster-than-real-time stereo system is
needed to save significant amount of processing time (both CPU time
and GPU time) for other higher level processing tasks. In the following
sections, we will explain in detail how this daunting task is
accomplished with commodity computer graphic hardware.
2. Related work

2.1. Vision signal processing using GPGPU

Nowadays, the performance of modern graphic hardware has
reached the point where billions of 3D model elements can be
rendered in real-time. The main reason for this achievement is an
architecture composed of a huge array of simple processors, which are
efficiently organized. Besides 3D rendering, this massive parallel
computing resource can actually be used to speed-up many other
applications, including computer vision signal processing.

http://dx.doi.org/10.1016/j.imavis.2011.01.007
mailto:yongzhao@brown.edu
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http://dx.doi.org/10.1016/j.imavis.2011.01.007
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Fig. 1. Processing pipeline of our stereo algorithm.
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Regardless of the short history of General Purpose GPU (GPGPU)
technology, many computer vision researchers are among the first
group of pioneers who have explored the general use of GPU parallel
computing resource on various kinds of computer vision tasks, such as
local feature detection [1], edge detection [2], and stereomatching [3–
9], to name a few.

In this paper, we have chosen to use Nvidia graphics cards, and
their Compute Unified Device Architecture (CUDA) programming
model, to process our stereo data. Since even a brief introduction of
CUDA would be too large to be presented here, we refer interested
readers to [10] for detailed architecture information.
Fig. 2. (a) Coarse-to-fine matching on multiple resolutions; (b) foreground detection is pe
foreground detections only takes place at the boundary blocks of foreground blobs. Only the g
the pixel-wise comparison to the background model.

Fig. 3. (a) CUDA implementation of foreground detection; (b) the foreground mas
2.2. Real-time stereo matching algorithms

During the past 20 years, many stereo systems have been
successfully developed with high flexibility, compact size and
acceptable cost. The overall stereo matching literature is too large to
be surveyed here. We refer interested readers to [11] for a taxonomy
and evaluation. Instead, in this section we briefly mention recent
progress in GPU-based real-time stereo algorithms.

In 2003, Yang and Pollefeys presented a multi-resolution real-time
stereo algorithm implemented in a commodity graphics hardware
platform [12]. The traditional sum-of-square-difference (SSD) was
used to independently aggregate matching cost on different resolu-
tions. The final matching cost was determined here as the sum of the
matching costs from the different resolutions. A winner-take-all
scheme was used to determine the disparity. This multi-resolution
scheme effectively reduced noise from the high resolution matching
errors and provided a smoother depth map. However, the accuracy of
the depth map, especially on the image area where depth disconti-
nuities take place, was compromised. They achieved 50–70 M
disparity evaluations per second (MDE/s), resulting in a quasi-real-
time system which, at that time, set a new record for stereo matching
speed.

In 2004, Yang and Pollefeys presented a new GPU-based adaptive
window approach [13]. Instead of the traditional fixed-size square
window, their cost aggregationwindows can adaptively change shape
according to the content of the local image area, taking into account
edges and corners. This work successfully pushed the stereo matching
rformed on multiple resolutions, from low to high. On higher resolutions, the actual
reen pixels on the above foregroundmasks represent the foreground pixels detected by

k is packed with the color image at the A channel of RGBA formatted image.
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Fig. 4. CUDA implementation of dense matching using adaptive window.
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speed record up to 289 MDE/s using more modern computer graphics
hardware.

More recently, a number of new GPGPU-based stereo matching
algorithms have been presented [3–9]. Some of them emphasize
different features, such as wide dynamic range for outdoor use, or
semi-global optimization for better accuracy. It is worth to mention
the work of Yang et al. [9], in which a belief propagation based global
Fig. 5. CUDA implementation of dense
algorithm is managed to run at real-time on GPU. It might be the first
time that the high quality which is usually only available from those
slow global algorithms, was achieved in real-time.
3. Method

3.1. Processing pipeline

Fig. 1 shows the pipeline of our algorithm. Stereo video frames are
captured and rectified, so that a pair of row-aligned images can be
obtained to reduce the computation cost of matching. However, the
stereo matching doesn't start from the original input resolution.
Instead, a pyramid of down-sampled images are computed from the
rectified pair, denoted by {I1, I2, ⋯, IN}. N is the number of total
resolutions. IN is original full resolution of stereo frame, and each Ii is
the half sample of Ii+1. Before stereo matching starts, multi-
resolution background modeling on both view, denoted by {B1, B2, ⋯,
BN} is applied on stereo views to detect the multi-resolution
foreground mask {F1, F2, ⋯, FN}. The foreground detection result is
used to improve the matching performance. The stereo dense
matching will be processed on the lowest resolution I1 first, then
progressively on other higher resolutions.

During this process, the disparity searching is performed only on
the searching range suggested by disparity result from lower
resolution. This iteration continues until the processing on the
original full resolution IN is completed. Fig. 2(a) shows some
matching using adaptive window.

image of Fig.�4
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Fig. 6. CUDA implementation of dense matching using adaptive window. (a) Disparity sweeping starts after buffers B1 and B2 are loaded with the first and second pixel blocks. (b)
During each step of disparity sweeping, each pixel of the 8×8 pixel block in the center part of buffer A, is compared with the pixels in the corresponding region in B1–B2 combined
buffer. After each step, a one-pixel offset is applied on the horizontal direction. (c) The disparity sweeping keeps proceeding till it reaches the end of the B1–B2 combined buffer. (d)
Buffer B1 is cleared. (e) A new B2–B1 combination is formed. (f) Next 16×16 pixel block from right view is loaded in buffer B1, then the disparity sweeping keeps going.
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intermediate results from this coarse-to-fine multi-resolution pro-
cess. Once the original resolution disparity map is computed, sub-
pixel disparity refinement is optionally applied in applications that
need better precision.
Fig. 7. Integrate a 16×16 2D image block in a CUDA thread block.
3.2. Multi-resolution background modeling

The foreground segmentation is embedded in our stereo matching
pipeline. Because of many applications, only moving objects are of
interest. In these cases, the uninteresting background part of the
image results not only in a waste of processing time, but also in
additional sources of matching errors.

Our foreground detection algorithm is based on the algorithm
introduced by K. Jain et al. [14], which is an efficient variation of
Gaussian background modeling [15]. This background modeling is
applied on HSV space instead of RGB space in order to reduce shadow
effects. This background modeling algorithm works fine with most
indoor scenarios and is computational economic enough for real-time
applications. However, any other background modeling algorithms
can be used in our stereo matching pipeline as long as they can
produce a binary mask indicating a foreground or background
decision.

In our multi-resolution pipeline, the foreground detection algo-
rithm is applied on the pyramid, progressively from low to high
resolution. In addition, two extra steps are taken to accelerate the
processing on multiple resolutions and improve the smoothness of
foreground detection, respectively.

First, stereo images on different resolutions are divided into square
blocks in the foreground detection. For each pixel block from Ii (iN1),
the foreground detection results Fi−1 from the lower resolution Ii−1,
are checked. If all the pixels of the corresponding block in Ii−1 have
uniform detection results (either all foreground or all background),
then this result will be copied to all the pixels of the block on Ii.
Otherwise, pixel-wise comparison between Ii and Bi is applied to
decide whether it is a foreground pixel or not. This process is
illustrated in Fig. 2(b). By doing this, only pixels of the foreground
boundary blocks are actually tested against the background model. At
the same time, most noises on foreground blobs at high resolutions
are removed. In our practice, this technique can effectively reduce the
total number of pixels which need to be tested by up to 90%.
Second, foreground dilation and erosion are applied on the
foreground detection result, which fills the holes inside foreground
blobs. After this, a pyramid of nice and smooth foreground detections
are obtained.

The CUDA implementation of this multi-resolution foreground
detection algorithm comprises multiple passes, each of which works
on a different resolution. In each pass, the steps of background update,
foreground detection, foreground dilation, and foreground erosion are
all performed by one CUDA kernel function. As illustrated in Fig. 3(a),
each 16×16 thread block takes care of loading and processing a
16×16 pixel square block. However only the center 8×8 pixel square
is saved. This mapping gives each 8×8 pixel block a 4 pixel wide
“apron”which overlaps with surrounding blocks. The overlapped part
of image is processed redundantly so that the foreground dilation and
erosion would not cause artifacts at the block boundary area. The

image of Fig.�6


Fig. 8. Integrate a 1D pixel array with 16 pixels by a CUDA half-warp.
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result of foreground detection is saved in the Alpha channel of the
rectified input images, which are represented in RGBA format, as
indicated in Fig. 3(b).
3.3. Multi-resolution stereo matching

In our algorithm, stereo matching starts from the lowest
resolution. The adaptive window approach introduced by Yang and
Pollefeys [13] is adopted here to compute the matching cost. The
reason is that this approach results in higher matching accuracy
compared to the fixed window approaches, given the same number of
involved neighboring pixels. However, as the resolution of image and
range of disparity scan increases, the 4×4 sub-window configuration
in this algorithm eventually becomes insufficient. This is why this
approach is used only on the lowest resolution I1.

For example, we need to compute disparity map for a stereo pair
with full resolutionWN×HN anddisparity searching range SN. The lowest
resolution of this stereo input is WN

2N−1 × HN

2N−1, and the corresponding

disparity searching range S1 = SN
2N−1. For eachpixel on the left viewof the

lowest resolution, denoted by I1(left,x,y) (left means left view of stereo
Fig. 9. Sample code of CUDA device function
pair, x and y are pixel coordinates on horizontal and vertical direction,
respectively), the process of computing its disparity D1(left,x,y) is as
follows:

• If F1(left,x,y)=1, continue; otherwise, no disparity for I1(left,x,y).
• For s∈ [x,x+S1], compute the matching cost C(s) using adaptive
window approach if F1(right,x+ s,y)=1. If F1(right,x+s,y)=0, set
the matching cost C(s)=∞.

• Disparity D1(left,x,y)=argminsC(s), where s∈ [x,x+S1].

Once the stereo matching on the lowest resolution is done, stereo
matching is performed on higher resolutions progressively. For each
pixel of left view at resolution i, denoted by Ii(left,x,y), the process of
computing its disparity Di(left,x,y) is as follows:

• If Fi(left,x,y)=1, continue; otherwise, no disparity for Ii(left,x,y).
• For s∈ 2⋅Di−1 left; x2 ;

y
2
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−2;2⋅Di−1 left; x2 ;

y
2
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, compute the

matching cost C(s) using adaptive window approach if Fi(right,x+
s,y)=1. If Fi(right,x+ s,y)=0, set the matching cost C(s)=∞.
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Fig. 10. (a) Input image; (b) disparity map from stereo matching with left view as the reference image; (c) disparity map from stereo matching with right view as the reference
image; (d) depth map after cross-checking. Matching error caused by occlusion and poor texture is successfully removed.
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Notice that two steps are taken tominimize the disparity searching
range: 1) the foreground detection result is used in this process in
such a way that, only foreground pixels from both views are
considered for possible matching. 2) For each resolutionIi (iN1), we
limit the searching to a 4 pixel span centered at the suggestion from
the disparity result on the lower resolution Di−1. By doing this, the
Fig. 11. The disparity maps of the benchmark stereo image pairs on Middlebury website obt
second— Venus, the third— Teddy, and the fourth— Cones. The first column— reference ima
matching process is significantly accelerated, and the matching
accuracy is improved as well.

Our algorithm is different from one of the most well-knownmulti-
resolution real-time stereo approaches [12]. In that work, Yang et al.
propose that for each pixel, matching cost is aggregated on a number
of different resolutions, and the final disparity is decided by first
ained by our multi-resolution adaptive window algorithm. The first row — Tsukuba, the
ge, the second— ground truth, the third— our results, and the fourth—matching errors.

image of Fig.�11


Table 1
Error rate of our method on Middlebury dataset.

Algorithm Avg.
rank

Tsukuba Venus Teddy Cones % of bad
pixels

Nonocc All Disc Nonocc All Disc Nonocc All Disc Nonocc All Disc

Our method 73.0 8.29 10.3 22.4 6.20 7.51 26.6 12.5 21.2 25.7 5.83 14.5 10.3 14.3

Table 2
Accuracy and speed performance comparison of different algorithms using Middlebury
dataset. The unit of speed performance measurement is Million Disparity Estimation, or
MDE/s. These numbers do not necessarily mean the actual number of disparity
evaluation, but the effectively equivalent speed. The accuracy performance is all
evaluated using the Middlebury benchmark images. Algorithms followed by the * sign
do not report Middlebury benchmark result. For these algorithms, the error rate results
are from our own implementation on a PC. All speed performance numbers are from the
original papers. This comparison includes the following algorithms: AdaptOvrSegBP
[17], SymBP+occ [18], DoubleBP [19], EnhancedBP [20], LocallyConsist [21], CoopRe-
gion [22], AdaptingBP [23], C-SemiGlob [24], FastAggreg [25], OptimizedDP [26],
SegTreeDP [27], RealtimeVar [28], RealtimeBP [9], RealtimeGPU [29], MultiResSSD [12],
PlaneFitBP [30], RealtimeDP [31], ESAW [32], ConnectivityCons [33], AdaptiveWin[13],
CSBP [34], RTCensus [35], and our method.

Algorithm name Percentage of
bad pixels

Speeds
(MDE/s)

Hardware platform

AdaptOvrSegBP 5.59 0.04 3.2 GHz CPU
SymBP+occ 5.92 0.08 2.8 GHz CPU
DoubleBP 4.19 0.1 PC
EnhancedBP 6.69 0.13 PC
LocallyConsist 6.33 0.15 2.5 GHz CPU
CoopRegion 4.41 0.18 1.6 GHz CPU
AdaptingBP 4.23 0.2 2.21 GHz Athlon 64 bit
C-SemiGlob 5.76 0.4 2.8 GHz CPU
FastAggreg 8.24 6.14 2.14 GHz CPU
OptimizedDP 8.83 9.95 1.8 GHz CPU
SegTreeDP 6.82 10.2 2.4 GHz CPU
RealtimeVar 9.05 13.9 2.85 GHz CPU
RealtimeBP 7.69 19.7 Geforece 7900 GTX
RealtimeGPU 9.82 53 ATI Radeon XL1800
MultiResSSD* 17.32 117 Nvidia Geforce4
PlaneFitBP 5.78 170 Nvidia Geforce 8800 GTX
RealtimeDP 10.7 187 AthlonXP 2400+ CPU
ESAW 8.2 194.8 Nvidia Geforece 7900 GTX
ConnectivityCons* 15.62 280 Nvidia Geforce 6800 GT GPU
AdaptiveWin* 19.69 289 ATI Radeon 9800
CSBP 11.4 460 Nvidia Geforece 8800 GTX
RTCensus 9.73 1300 Nvidia Geforce GTX 280
Our method 14.3 7200 Nvida Geforce GTX 280
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summing up the matching cost on all these resolutions and searching
for the minimum overall cost. This basically means using the average
matching costs on multiple different resolutions to decide high
resolution disparity. Their approach generates good-looking disparity
map, but usually lose the high resolution detail because of smoothing
factor introduced by the results from lower resolutions. Also their
approach computes matching cost along the full disparity searching
range on all resolutions, and saves all the immediate matching cost
results in global memory, which brings tremendous burden on the
global memory bandwidth.

Our approach on the other hand, uses the disparity results from
lower resolution to guide the searching range at higher resolution.
Matching cost dose not need to be computed exhaustively on every
possible test disparity along the searching range. Therefore time is
saved both from computing and global memory access. And the final
high resolution disparity is directly determined only by the high
resolution matching cost aggregation. Therefore our approach tends
to preserve high resolution details. Of course there exist chances
where once a wrong decision has been made at low resolution, it can
not be corrected at higher resolution. However in practice, the chance
of erroneous matching at low resolution is quite low. And cross-
checking can always be used to detect most low resolution matching
errors. And these problematic pixels will get opportunities to be
corrected on higher resolutions later.

3.4. Single CUDA kernel implementation of stereo matching

It's worth to mention some of our CUDA implementation details
because an elaborate job of mapping processing and data to CUDA
concurrent thread array (CTA) is extremely important for achieving
optimal performance. As illustrated in Fig. 4, each thread block loads a
16×16 pixel block from the reference image but only the disparities of
the center 8×8 pixels are evaluated. All the input data – rectified
image pairs with foreground masks embedded in the Alpha channel –
are bind with CUDA texture so that fast access can be achieved
through a cached memory interface.

Each thread block also loads two 16×16 square blocks from the non-
reference image. Then for each of the 8×8 pixels from the reference
image, cost aggregation is computedusing theadaptivewindowapproach
with3×3 sub-windowsize. If searching range is bigger than16pixels, the
thread block just loads another 16×16 square block from the non-
reference image and repeats the cost aggregation process. The disparity
evaluation finishes only after the entire searching range is covered.

Figs. 5 and 6 demonstrate how the implementation of our stereo
matching algorithm at a certain resolution, using just one single
kernel CUDA functions.

In Fig. 5(a), rectified stereo images (left and right view) with
foregroundmask at resolution i, aswell as the left-viewdisparitymap at
resolution i−1, are displayedon the upper row. Shown in the lower-left
of this diagram, is a CUDA thread block, or so-called the Concurrent
Thread Array (CTA) taking care of estimating disparity at a 8×8 pixel
block region. But in order to compute the matching cost using adaptive
window, this CTA actually needs to load a bigger 16×16 pixel block
which is centered at the 8×8 pixel block. Before the stereo matching
starts, this CTA first reads the lower resolution disparity map at
corresponding region shown in the upper-right. From the lower
resolution disparity map, a lower and upper boundary of the disparity
values of this pixel block at current higher resolution can be obtained.
For example, if the lower resolution disparity map at this region varies
in [21,42], then at current resolution, disparity should be searched in
[42−2,84+2]. Notice that an extra 4 pixel padding is added on both
ends. On the upper-center part of this diagram, a yellow arrowed line is
used to highlight the suggested disparity searching range at resolution i.
Each CTA creates three 16×16 RGBA buffers in their shared memory,
denoted by A, B1 and B2.

In Fig. 5(b), CTA fills three RGBA buffers A, B1 and B2 with 16×16
pixel blocks from left-view and right-view. Different colors are used to
indicate the corresponding location: the pixel block from left-view is
loaded in buffer A, the first and second pixel block along the disparity
searching line are loaded in buffer B1 and B2, respectively. Once the
data is ready in these fast internal buffers, a so-called “disparity
sweeping” can be performed. The big white horizontal arrow on top of
buffer A indicates the direction of this sweeping.

Fig. 6(a,b,c,d,e,f) illustrates the “disparity sweeping” process:
Buffer A is loaded with a 16×16 pixel block from the left view,
buffers B1 and B2 are loaded with the first and second 16×16 pixel
blocks of right view initially. Buffers B1 and B2 are combined as a
16×32 pixel block. Buffer A is used to “sweep” along the combined
B1–B2 buffer. At each step of this “sweeping”, the matching cost of the
center 8×8 pixel block is computed using the adaptive window
approach. When sweeping reaches the end of the B1–B2 combined



Fig. 12. Accuracy and speed performance comparison of different algorithms.

427Y. Zhao, G. Taubin / Image and Vision Computing 29 (2011) 420–432
buffer, B1 is cleared and reloaded with the next pixel block from the
right view. Then B1 is attached at the trailing end of B2 to form a B2–
B1 combined buffer. Then “sweeping” can keep going till the whole
disparity searching is finished.

Fig. 6(g) shows what actually happens for each pixel in the left
view during the “disparity sweeping”. Red color is used to highlight
the pixel in buffer A, whose disparity will be estimated by the
“disparity sweeping”. From the corresponding location in the lower
resolution disparity map, the suggested disparity of this pixel at
higher resolution can be obtained, which is also highlighted using red
color in the B1–B2 combined buffer. During the “disparity sweeping”,
each CTA travels a much longer distance. Only when the “sweeping”
proceeds into a small 4 pixel range which is centered at the suggested
high resolution disparity, the adaptive window matching cost will be
computed for this pixel. Please notice that foreground detection
information which is embedded at the Alpha channel, will also be
used to constrain the matching cost computing during the “disparity
sweeping” process.

Fig. 5(c) and (d) shows how “disparity sweeping” is performed on
the example stereo image pair with swapping buffers B1 and B2 in the
combined buffer. Finally, a left-view disparity map (shown in the
lower-right of Fig. 5(d)) at resolution i is created by this single CUDA
kernel function.

It's worth to mention an important CUDA implementation
technique which dramatically improves the speed performance of
the “disparity sweeping” process — using integral image to
accelerate computing matching cost in sub-windows. Integral
image is a useful technique to compute the sum of values from a
rectangular block efficiently. The definition of integral image is that
for an image N, the integral image of N is I. The value of each pixel of I
must satisfy: I(x,y)=∑ x′=0

x ∑ y′=0
y N(x′,y′). However computing

integral image can be quite expensive. Here we present a very simple
CUDA implementation of 2D image integration.
In Fig. 7 we show a 16×16 SAD image block stored in shared
memory, which will be processed by a thread block with 16×16
threads. Each thread has a 2D thread ID (threadIdx.x, threadIdx.y).
And each pixel has a 2D coordinate (h_lane, v_lane). In this example,
we want to compute an integral image of this SAD image so that later
we can efficiently compute the matching cost of each sub-window.
We use a two-pass approach to integrate the SAD image: first
integrate each row, then integrate each column.

In Fig. 8, we illustrate the process of integrate a 1D pixel array with
16 pixels using 16 threads from the same half-warp of a CUDA thread
block. It takes 4 steps to finish this 1D integration. During each step,
some thread replaces the value of a pixel using the sum of this pixel
with the value of another pixel. Because all the threads from the same
half-warp are automatically synchronized, each step can be executed
simultaneously without using an extra buffer. It doesn't take a
“__syncthreads()” command to synchronize the whole thread block
until the horizontal integration is finished. And then we proceed with
the vertical integration using the same 4 steps. A sample CUDA device
function of this 2D integration is shown in Fig. 9.

Compared to Yang's GPU implementation in [13], the most
remarkable improvement of our implementation is that, for each
pixel, the entire disparity searching takes place within one kernel
function and only the final disparity result is stored in global memory
just once. This helps to speed up the processing quite significantly
because writing to global memory in the GPGPU is one of the most
time-consuming operations, due to the fact that there is no outbound
caching in current GPGPU architecture.

3.5. Cross-checking

Cross-checking was firstly introduced by Cochran et al. [16]. The
idea is as follows: there are two views with a pair-wise stereo. One is
called reference view and the other is called target view. The stereo

image of Fig.�12


Fig. 13. Accuracy comparison of multi-resolution adaptive window approach and single resolution adaptive window approach. First row: stereo pairs and ground truth disparity
map; second row: disparity maps obtained by the original single resolution adaptive window approach[13], on the same stereo pair at different resolutions: left — 325×275,
middle — 650×550, and right — 1300×1100; third row: disparity maps obtained by our multi-resolution adaptive window approach on different resolutions: left — 325×275,
middle — 650×550, and right— 1300×1100. The disparity search range is one-fourth of the image width. The error rates are displayed at the bottom of each resulting disparity
map.
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matching process is for each pixel of reference view, to find its
correspondence in the target view. When the reference view and the
target view are exchanged, the two resulting disparity maps may not
be entirely identical. This problem may be caused by occlusion,
reflection, differences caused by non-Lambertian surfaces, and
486
3870

30960

47.7 221.4 1125

525x275x60 650x550x120 1300x1100x240

Memory Traffic (Million Pixels)

Single Resolution Adaptive Window Multi-Resolution Adaptive Window

Fig. 14.Memory traffic comparison of multi-resolution adaptive window approach and
single resolution adaptive window approach on different resolutions.
sampling noise. Cross checking is a process to check the consistency
of disparity estimation when reference view is changed. For example,
after stereo matching at two different reference view, there are two
resulting disparity maps: D(left) and D(right). For a pixel of left-view
disparity map at position (x,y), the disparity value is D(left,x,y); this
means the corresponding pixel at the right image is at position (x+D
(left,x,y),y); then the actual disparity value of this pixel at the right-
view disparity map, which is D(right,x+D(left,x,y),y), is checked;
make sure that the sumof two disparity value is zero, whichmeans the
stereo matching results on this pair of pixels when disparity is
estimated from two different reference views, are consistent. By doing
cross checking,most of thematching errors can be effectively detected
and removed, and therefore the matching accuracy can be improved.
Fig. 10 shows how cross-checking removes the matching errors.

In general, cross checking can detect erroneous matching results
but also leave some holes whose disparity values are missing. In a
multi-resolution framework like ours, pixels from these holes at the
lower resolution disparity map, will be searched at the maximum
disparity range defined by the whole CTA. In practice, this would give
opportunities to these holes to be filled at higher resolution.

image of Fig.�13
image of Fig.�14


Fig. 15. Stereo matching on foreground region vs stereo matching on full image. (a,b) left and right view of stereo pair; (c,d) left and right view of foreground region; (e) full image
ground truth disparity map; (f) full image disparity map obtained from our method without using foreground information; (g) foreground only ground truth disparity map; (h)
foreground only disparity map obtained from our method using foreground information; (i) depth discontinuity map: black means boundary and occluded regions, white means
boundary regions on the depth discontinuity, gray means non-occluded regions; (j,k) error map of full image stereo matching and foreground only stereo matching on the depth
discontinuity regions; (l) error rate (percentage of bad pixels) only on the depth discontinuity regions around foreground blobs.
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Therefore, the holes from lower resolution will not be passed or even
enlarged at higher resolution.

4. Results

4.1. Middlebury evaluation

Comparing ourmethodwith other stereo algorithms is not straight
forward. The reason is that our method only works on moving objects
which are detected by a background model. In order to appropriately
measure the performance of our method, a reference stereo video
dataset with ground truth information is needed. Unfortunately, such
dataset is not available. In order to compare with other regular stereo
algorithms which work on a pair of static stereo images, we use the
Middlebury static stereo datasets [11], with the assumption that the
whole image area is foreground. The output disparity maps are shown
in Fig. 11, and the error rate for different pictures are shown in Table 1.

In Table 2, the performance of 23 different stereo algorithms
including ourmethod is compared. This comparison covers all kinds of
algorithms: belief propagation based algorithms, segmentation based
algorithms, dynamic programming based algorithms, correlation
based local algorithms, as well as some semi-global algorithms.
Some of these algorithms also operate on multiple resolutions. The
comparison is made both on accuracy and speed. Fig. 12 visualizes the
result of this comparison on a 2-d chart. Notice that the vertical axis of
this chart is in logarithmic scale. Our algorithm is at the top of this
chart and is more than 100,000 times faster than the slowest
algorithm. In general, it is obvious that more accurate algorithms
tend to be slower. Compared to all the global or semi-global
algorithms, our algorithm is much faster but also less accurate; but
compared to some other local algorithms such as MultiResSSD [12]
and AdaptiveWin [13], our algorithm is much faster and more
accurate. This proves that the coarse-to-fine process in our multi-
resolution framework works better than just averaging the matching
results frommultiple resolutions in [12]; and it also demonstrates that
using adaptive window on multi-resolution can achieve better
accuracy than AdaptiveWin [13]. On the right side of Fig. 12, we
also indicate the frame-rate of stereo algorithm when applied on a
1024×768 stereo pair with a 256 pixel disparity range, which is used
in our human detection, tracking and identification system (presented
in a separate paper). Almost every algorithm faster than 0.5 fps is
implemented on GPU. And our algorithm is the only one which
achieves 30+ fps — a commonly used video frame-rate.

4.2. Multi-resolution vs single-resolution

Just like the original adaptive window approach [13], our approach
is also a local algorithm, in the sense that the disparity decision for
each pixel is made purely based on the local matching cost for this
pixel alone. However, our method differs from the original one in the
sense that the decision at each resolution is directly constrained by
the decision from previous lower resolution. At the original
resolution, the decision on each pixel is affected by the visual content
of its neighborhood at all the different lower resolutions. Therefore,



Fig. 16. Screen shots of our real-time stereo system working on the field.
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compared to the original single resolution adaptivewindow approach,
our approach is somewhat more “global”.

This advantage is confirmed by the experimental results. In this
experiment, our approach and the original approach are both applied
on the same stereo image pair at three different resolutions:
325×275, 650×550 and 1300×1100, shown in Fig. 13. The disparity
search range is always one-fourth of the image width, the same 3×3
pixel sub-window in both algorithms. The error rates are shown
under each resulting disparitymap in Fig. 13. It turns out that, at lower
resolution, two algorithms produce similarly accurate result. This is
due to the fact that the scene texture at that resolution is just about
enough to differentiate each pixel from other pixels on the same
epipolar line. As the resolution goes up, the accuracy of the original
algorithm deteriorates dramatically, while the accuracy of our
algorithm only slightly drops. Increasing the size of the sub-window
does not help the original algorithm because it brings too much error
at the depth discontinuity region of the image.

Improved accuracy is not the only advantage of our approach over
the original one. Our approach is also much faster than the original
approach does. The reason is obvious: in our approach, a full range
disparity search is applied only at the lowest resolution. On higher
resolutions, disparity search only occurs in a 4 pixel range for each
pixel. This significantly reduces the computational cost. As we know,
on a SIMD architecture GPGPU device, memory traffic is the most
significant part of computing cost for most processing tasks. The
comparison of memory traffic on our approach and the original
approach is shown in Fig. 14. Again the experiment is done on three
different resolutions, the disparity search range is one-fourth of the
image width. At the original resolution, which is 1300×1100 pixel,
our approach is about 30 times cheaper than the original approach on
memory access.

Therefore, the effectiveness of using multi-resolution on a purely
stereo algorithm is clearly proven by the significant improvement on
both accuracy and speed.

4.3. Stereo on foreground vs stereo on full image

The reason that we use foreground detection to constrain our
stereo matching algorithm is that only moving objects are of interest
in our target applications. Therefore we don't have to waste
computing resource on those uninteresting background regions of
image. In reality, indoor background is usually poor of texture and
therefore is a major source of the overall matching errors. Many
previous applications use a full image stereo algorithm then use the
foreground detection result to filter the full image depth-map.
However, we think using foreground detection result at the early

image of Fig.�16
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stage of stereo matching algorithm would be more efficient both in
cost and quality.

Computing stereo matching only on foreground region not only
saves computing time, it also improves the accuracy of the stereo
matching, especially at the boundary regions of foreground blobs.
These regions are also the depth discontinuity regions between
foreground objects and their background. The reason is simple:
without foreground information, we have to make a decision at the
depth discontinuity region: which side each pixel belongs to? This
decision is often difficult for the local algorithms because the
matching window they use is usually bigger than one pixel.
Foreground information can make this decision very easy: all
foreground pixels belong to the foreground region.

In order to verify this advantage, the following experiment is
conducted: some foreground objects (the lamp and the statue) in one
of the Middlebury benchmark stereo images — Tsukuba, as shown in
Fig. 15(c) and (d), are manually segmented out. The depth
discontinuity region (Fig. 15(i)) around the foreground objects is
also manually defined. First our multi-resolution adaptive window
approach is applied on the full image area, to obtain the full image
disparity map (Fig. 15(f)); then our stereo matching algorithm with
the constraint that only foreground pixels can be matched to each
other is applied, and the foreground disparitymap shown in Fig. 15(h)
is obtained. Finally the error rates of two different results only at the
discontinuity region are compared. The error maps are shown in
Fig. 15(j) and (k) and the error rates are listed in Fig. 15(l). This
experiment clearly shows that using foreground information signif-
icantly improves the quality of disparity map on foreground regions
that we care. The disparity values on the boundary of these objects are
smooth and accurate. Some screen-shots of our system working with
live video in real-time is shown in Fig. 16.

5. Conclusions

We have presented a new stereo matching algorithm and GPGPU-
based implementation, which is focused on real-time applications
such as motion detection, object tracking, interactive user interface,
pose analysis, etc. We carefully implemented it on commodity
computer hardware using CUDA. Our implementation can deal with
high definition video, large disparity searching range, and speeds
significantly higher than the input video stream frame rates.
Therefore, a lot of GPU and CPU processing resource can be allocated
to other processing tasks. This technique will enable the use of high
quality stereo matching in many applications.

In the past, stereo video cameras were often expensive and hard-
to-use, compared to the traditional single sensor cameras. The main
reason has being that compute-intensive real-time processing of
stereo data was too expensive for the existing hardware. Because of
the rapid advance of hardware performance, and a careful algorithm
design, this situation has changed. We believe that stereo cameras
should be able to serve most computer vision applications as a kind of
ubiquitous visual sensors, and regard our work as a contribution
towards that goal.

There are some shortcomings of our algorithm. Our algorithm uses
background modeling, which makes it unable to work with scenarios
where background model is not applicable, such as moving cameras.
Because it is still a local algorithm, its accuracy performance on poorly
textured objects is not good. Therefore it is not an ideal solution for
applications where accuracy is the major concern. But for applications
where speed performance is the key concern, such as real-time
surveillance application, our algorithm works very well.
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