RC 20889 (92539) (6/16/97)
Computer Science/Mathematics 10 pages

Research Report

Surface Partitions for Progressive Transmission and Display, and
Dynamic Simplification of Polygonal Surfaces

André Guéziec, Francis Lazarus and Gabriel Taubin

IBM Research Division
T.J. Watson Research Center
Yorktown Heights, NY 10598

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

Research Division
Almaden - T.J. Watson - Tokyo - Zurich - Austin

Surface Partitions for Progressive Transmission and Display, and
Dynamic Simplification of Polygonal Surfaces

AndréP. Guéziec, Francis Lazarus and Gabriel Taubin
IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

gueziec, francis, taubin@watson.ibm.com

ABSTRACT:

We present a new method for (1) automatically generating multiple Levels Of Detail (LODSs)
of a polygonal surface, (2) progressively loading, or transmitting, and displaying a surface, and for
(3) changing interactively the LOD when displaying. We build the LODs using any algorithm that
performs edge collapses and certain vertex removals to simplify surfaces, and provides an ordered list
of ordered vertex pairs (edge collapse specifications). We propose a Surface Partition for encoding
surface LODs: we define vertex and triangle levels during simplification; vertices and triangles are
partitioned and sorted according to their level, and are passed to the display algorithm in decreasing
level order, one level at a time, together with a vertex representatives array. Each level of vertices and
triangles, together with higher levels and the vertex representatives, form a valid surface. We propose
a data structure using a Directed Acyclic Graph (DAG) for recording a partial ordering among edge
collapses, and varying the LODs across the surface.

Key-words : Edge Collapse, Vertex and Triangle Levels, Surface Levels of Detail, Surface
Partition, Progressive Transmission and Display, Dynamic Simplification.

1. Introduction

Our starting point, as Ronfard and Rossignac’s [1], Hoppe’s [2], and Xia and Varshney’s [3] is to
use a simplification algorithm that generates edge collapses, or vertex removals corresponding to a
particular edge collapse, to produce a series of intermediate levels of detail. The actual order in which
the collapses occur is irrelevant. However, when a given Collapse ¢ is validated by the algorithm,
the collapsed edge neighborhood is in a particular configuration, resulting from a few identifiable
edge collapses, say Collapses 7 and %: we record that Collapse = must occur after Collapses ;7 and &,
defining a partial ordering on the collapses that we use in our method.

We developed this method after observing the patterns of vertex and triangle representatives and
pc-reps naturally resulting from the simplification method of Guéziec [4] (see Fig. 1 and explanations
on representatives and pc-reps of Section 2.1 and Fig. 2B). The main differences with the related
work on interactively defining LODs [1, 2, 5, 3, 6] are that: (1) by concentrating on global LODs
and progressive surface display, we develop a LOD format of small overhead, i.e., an array of vertex
representatives; (2) we introduce the principle of Surface Partitions; (3) we provide a new definition
for a vertex and triangle levels; (4) we exploit the one-to-one correspondence between edge collapses
and removed (blue) vertices: we store old attributes of the remaining (red) vertex using the blue,
subsequently unreferenced, vertex during collapses, thus allowing vertices to move or normals and
other attributes to change.

In Section 2 we introduce Surface Partitions and use them for changing interactively the LOD ina
display using a single surface model and an array of vertex representatives. We also propose a format
for progressively loading and displaying a surface. In Section 3, we define a data structure using a
DAG to represent a partial ordering among edge collapses; we describe work in progress for varying
the LODs across the surface.

1.1. Background

Background on surface simplification can be found for instance in Guéziec [4]. For the present
paper, a surface is a set of triangles, where each triangle is a triple of vertex references. An edge is
a pair of vertices, called endpoints, used in a triangle. The star of a vertex is the set of triangles that
share that vertex. The star of an edge is the union of the edge endpoint stars. To provide an intuitive
surface model, and because we start with the simplification method of [4], we suppose that the star
of each vertex is homeomorphic to a disk or a half disk at the boundary, yielding a 2-manifold (see
Hoffmann [7]): this assumption is also used in Section 2.4. A boundary edge is shared by one triangle
only. Edges shared by two triangles are interior edges. An edge collapse consists of bringing both
endpoints of an edge to the same position, thereby eliminating two triangles (or one triangle when
collapsing a boundary edge).

Figure 1: Forest of representative relationships obtained as the natural outcome of Guéziec'’s
simplification algorithm: vertices connected by marked edges simplify to the same location;
triangles of the same color have the same pc-rep; grey triangles are pc-reps; see also
Figs. 2B and 6.

2. Global LODsusing Surface Partitions
2.1. Red and Blue Verticesand Triangles

We give the edge collapse a direction, by calling a blue vertex and a red vertex both endpoints,
such that: the blue vertex is removed and the red vertex remains (see Fig. 2A); the position of the
red vertex can be modified; the red vertex is the representative of the blue vertex; Examples of edge
collapses, with red and blue vertices, are shown in Fig. 3. More generally, each surface vertex has
a representative, preferably stored using an array; red vertices are their own representative. At the
start of the simplification process, each vertex is red; subsequently, some red vertices become blue;
in the end, the simplified surface uses red vertices exclusively. There is a one to one correspondence
between blue vertices and edge collapses. Red vertices are similar to the “parents” and blue vertices
to the “children” in Xia and Varshney’s method [3], except that their parents and children do not form
a partition of the vertices. Hoppe’s data structures [10] ignore the direction of the collapsed edge.

blue triangles are removed during an edge collapse, red triangles remain. In Fig. 2A we illustrate
how vertex and triangle representatives are updated when performing an interior edge collapse v; —
v» (a boundary edge collapse is treated similarly). We note v3 and v, the vertices adjacent to both v,
and v.. Edge (v1, v2) is now degenerate; it will not be referenced subsequently. The representative
of Edge (v, vs) is Edge (v2,vs). The representative of Edge (v, v4) is Edge (v, va). Triangle

representative

vertex_index pc-rep
V1 V2
1] 2| 2
51/ 1] 2
711115
- 11| 15| 15
v is represented by 12|12 | 12
3
A B

Figure 2: A: during an edge collapse blue Vertex v, and blue triangles are removed, vertex,
edge and triangle representatives are assigned as arrows indicate. B: vertex representative
array, and path compressed representative (pc-rep) array for some vertices of Fig. 3.

A(v1, Ve, vs) is degenerate, its representative is the non-degenerate (red) triangle incident to (v, vs).
The representative of Triangle A(vy, v4, v2) is chosen similarly.

The original motivation for defining representatives was an efficient method for computing vertex
stars during simplification by “pivoting” around a vertex representative (see [4]). A benefit is that we
can identify the blue and red triangles in the original list of triangles. To build a simplified surface,
we path compress the vertex representative array as shown in Fig. 2B, resulting in the pc-rep array:
path compression is discussed in Tarjan [11], and consists of following the representative hierarchy
until a root is found, and of making each element point directly to the root. We store the triangles with
original vertex indices; when using a particular triangle, we temporarily replace vertex indices with
their pc-rep.

2.2. LOD Generation

Simple Example. We consider the model of Fig. 3, called the Simple surface, with 16 vertices
and 18 triangles. Nine edge collapses that were computed automatically by Guéziec’s algorithm are
used to simplify the surface. For now, we suppose that red vertices do not move. We assign levels
to vertices as follows: at the start all vertices are red with level 0. When an edge is collapsed, we
compute the maximum level [in vertices of the edge star, and we assign level [+ 1 to both red and
blue edge endpoints. This is different from Xia and Varshney, who increment the level of all red
vertices independent of their neighborhood. We generate more levels than they do. [+ 1 is also the
level assigned to the triangles that become blue during the collapse. We use levels of blue vertices
and triangles to generate LODs. Levels of red vertices are only temporarily used for computing
levels of blue vertices. To become familiar with this process, it is best to examine carefully Fig. 3,
providing complete details of the edge collapses performed on the Simple surface. At the end of the
simplification process, we increment the highest level and assign it to all red vertices and triangles
(this is level 7 in Fig. 3).

12

1 2 3 2 2 2
Vv 1 i
51\ g |7 1 1 2 1 2 1 2
VII
19N\ 10| X 17 2 7 3
|
i v 3
13 14 15 | 5->1 | 6->2 I 2 9->13 IV 2 10->14
4 4 5 4 4 4 5 4 4
2
5
l/ /s /s 7/
1 2 3 2 3 1 2 3 1 2 3 1 2
2 2 2 5 2
2 3 3 5 3 5 3 5 3
3 3 0 3
V 2 4>0 VI 2 1>2 VIl 8->0 VI 7>11 IX 11->15

IRWASS
S

Figure 3: Simple surface: edge collapses, numbered | through IX, affect the levels of the red
and blue vertices as shown. Triangles removed during the collapses are shown on the top
left. The Level 1 and level 7 surfaces are shown below (colors are irrelevant), together with
the DAG representing the partial ordering of edge collapses.

Partitioning a Surface in LODs. We have produced a partition of the vertices and the triangles
using levels. For the Simple surface, the vertex partition is shown in Fig. 3, while the triangle partition
is shown in Fig. 4. Surface LODs can be defined as follows: the :th surface level consists of all
vertices and triangles of level greater or equal to . In Fig. 3 the coarsest surface level is 7 and the
finestis 1. To evolve from surface LOD z to 7 < ¢, we simply provide vertex and triangles of levels ;
toz — 1. We can create fewer levels by merging any number of consecutive levels in a single level.

We next sort the vertices and triangles according to their level, with the red vertices and triangles
coming first, and we update the triangle vertex indices and the vertex representatives to reflect the
permutation (sorting) on the vertices. To use the various levels, we need a reference copy of the vertex
representatives, a working copy that can be modified, and a pc-rep array that is re-computed each
time the working copy is modified (this is done on the fly as triangles vertex indices are visited, and
is inexpensive [11].) To use Level 7, we build the vertex pc-rep array from the vertex representative
array, and exchange the vertices of red triangles with their pc-rep. To use Level 6, we undo the
representatives of the vertices marked 6: in the working copy of the representative array, we overwrite
the corresponding representative with the index of the vertex itself, thereby “splitting” the vertex; we
then recompute the pc-rep. To use Level 5, we undo the representatives of the vertices marked 5; and

SENUN BENER
S Il
ool

Figure 4. Simple surface: A: labeling blue triangles according the the collapse number.
B: partitioning the surface triangles in 7 regions, using blue vertex levels; triangles with
label : are used in surface LODs ¢,: + 1....,7; together with the vertex partition and vertex
representatives, we define the Surface Partition.

so on. In Fig. ?? we illustrate the results of using this method to interactively change the LOD in a
surface model representing the Earth’s topography.

Consistent LODs. We prove that the above method produces consistent, or “good looking” surfaces.
By consistent, we mean that the surface can be obtained from the original surface with a series of edge
collapses that would be validated by the simplification algorithm; some collapses can be omitted or
performed in a different order, provided that for each collapse the edge star is exactly the same as it
was during simplification.

A global precedence amongst collapses is recorded using the vertex level. Suppose that we produce
an inconsistent surface when undoing the representative r of vertex b with level {. Then there exists
a vertex w in the star of r or b that relies on b — r to be collapsed, which implies that w has level at
least [+ 1. But we operate level by level, and at this time, no level [4 1 vertex remains.

This method is different from Hoppe’s Progressive Meshes [2], because we do and undo the edge
collapses in batches according to their level, which is not directly related to the order in which they
were performed.

2.3. Progressive Surface L oading and Display

By analogy with what is commonly performed for progressively loading and displaying image
files in Web Browsers, we propose a surface format suitable for progressive loading or transmission
as follows: we first send the coarsest surface level & (vertices and triangles) together with the vertex
representative array; then, in £ — 1 successive batches, we send the vertices and triangles only of level
k — 1to 1. We call this format a Surface Partition.

Supposing that no data compression technology is used on the surface, the same information is
provided as usual as we have the same number of vertices and triangles. The vertex and triangle levels
are implicit, as each surface portion has a level corresponding to the order in which it is loaded (or

9996 tris, level 0, 1.5 f/s 7400 tris, level 40, 2.0 f/s 5608 tris, level 60, 2.5 f/s

3894 tris, level 75, 3.5 f/s 2722 tris, level 90, 4.5 f/s 1476 tris, level 106, 6.5 f/s

Figure 5: Successive LODs of the Earth model; for each LOD, we reportthe number of frames
per second (f/s) during animation using an IBM POWER Gt4xi Graphics Adapter. The LODs
were generated in 10.5 seconds CPU on an IBM 58F workstation.

transmitted through a network). The vertex representative array must be provided separately. The
representatives of the red vertices are implicit and thus not provided.

We next perform a simple byte count for specifying a generic surface, ignoring vertex or triangle
properties. We suppose, as commonly done, that there are » vertices and approximately 2» triangles
(this depends upon the surface genus and number of boundaries; it is exact for a torus) and that 4
bytes are used to store each vertex coordinate (typically a 4 byte f1oat) and vertex index (typically
an 4 byte int). The generic surface would be stored using 36n bytes. The Surface Partition would
be stored using less than 40n bytes, since the vertex representatives array, which is the sole addition,
ignores red vertices. The Surface Partition incurs an additional cost factor of at most 40/36 ~ 1.1.

Red Verticesare Allowed to Move. We now drop the requirement of fixing red vertices. We create
a copy of the array of vertex positions, called the blue positions array. We call the original array red

positions. We can also create a copy of vertex normals, the blue normals, or of other vertex attributes.

Whenever we perform a collapse, before updating the red vertex position, we store its current
position in the blue position array entry corresponding to the blue vertex. When using the levels of
detail and undoing a vertex representative, we give back the red position to the red vertex. Because we
undo the representatives in decreasing levels, the positions and attributes that we restore are always
correct. The additional cost on the Surface Partition representation is ns bytes per attribute of size s
(s = 12 for vertex positions or normals).

2.4. Using Other Simplification Algorithms

We can use the specification of edge collapses as an ordered series of ordered vertex pairs
blue — red, provided by any simplification algorithm; we then recreate the representative relationships
and the levels. The Surface Partition uses triangle representatives, whose maintenance currently relies
on having a manifold surface. However, we can abandon this requirement if the blue triangles are
provided along the edge collapse specification by the other algorithms.

3. Local Levels of Detail

Each edge collapse has a status: S stands for "split”, meaning that the collapse is not performed
currently. C stands for "collapsed”, meaning that the collapse is currently performed.

Building a DAG for Storing a Partial Ordering of Edge Collapses. If performing a certain
collapse, for instance in Fig. 3 Collapse V' with blue vertex 4 and red vertex 0 (4 — 0), requires that
other collapses be performed beforehand, e.g., Collapse 7 (5 — 1) and Collapse /71 (9 — 13), we
add two edges (V' — I) and(V — I1I17) to the DAG. This means that the situations in which V' has
status C and I has status S or 171 has status S are impossible. This DAG is stored as two separate
hash tables, one that for V', stores both I and /11, and another one that for I and 111 stores V. We
also note that V' has two collapse constraints and that 7 and 771 each have one split constraint. When
we split V, then we can decrement the number of split constraints of 7 and 777. Similarly, we can
increment or decrement collapse constraints. The complete DAG for the Simple surface is represented
in Fig. 3. Incomparison, Hoppe’s vertex hierarchies [10] simply encode the blue — red representative
relationship, and “valid” collapses and split must be defined separately; our DAG completely defines
valid collapses and splits. Vertex representatives are analogous to Luebke’s triangle proxies [6]; he
uses an octree to represent vertex hierarchies which is different from the present method.

Once the final ordered list of edge collapses is known, we redo the collapses in their original order,
ignoring the geometry, which was examined during simplification. The vertex levels can be computed
at this stage. For instance, when redoing Collapse 7, we note that Vertex 5 influences Vertex 1. In a
vertex influence hash table, we record for Vertex 1 that 5 is one of its influences. We also examine the
current level of all vertices in the star of the collapsed edge. Each level greater than zero indicates that
the corresponding vertex was the outcome of a collapse. We retrieve the edge collapses that influenced
that particular vertex using the influence hash table. For instance, we remark that Collapses 7 and 177
must have occurred before, and we consign the information V' > I, I11 in the DAG.

7

Dynamic Local LOD Specification. We refer to an edge collapse using the corresponding blue
vertex, which has either C status or S status (if it became red). Initially, the surface is fully simplified
and all blue vertices except the ones with split constraints are entered in a split priority queue. The split
priority queue is keyed with an error before split, with larger values coming first: the error depends
upon the location of the vertex, simplification error measurements [4] and the projection parameters.
A collapse priority queueis initially empty. The collapse queue is keyed with the error after collapse,
with lower values coming first.

The following step applies for a series of views: while the error of the top vertex in the split priority
queue is larger than a maximum error, we split the blue vertex, update the corresponding collapse
constraints, and the collapse queue (such vertices can now be collapsed). Then, while the error of
the top vertex in the collapse priority queue is smaller than the maximum error, we collapse blue
vertices on that queue. Corresponding triangles are added or removed to the display list, represented
for instance using a doubly linked list of triangles. After processing a few views, we flush the two
priority queues, and refill them using up-to-date (viewpoint dependent) error information.

References.

[1] R. Ronfard and J. Rossignac. Full-range approximation of triangulated polyhedra. Computer
Graphics Forum, 15(3):C67-C76, 1996. Proc. Eurographics’96.

[2] H. Hoppe. Progressive meshes. In Sggraph, pages 99-108, New Orleans, August 1996. ACM.

[3] J.C. Xia and A. Varshney. Dynamic view-dependent simplification for polygonal models. In
Yagel and Nielson, editors, Visualization 96, pages 327-334. IEEE, October 1996.

[4] A. Guéziec. Surface simplification inside a tolerance volume. Technical report, IBM T.J. Watson
Research Center, Yorktown Heights, New York, March 1997. Revised version of RC 20440,
March 1996; available from the author.

[5] P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and G.A. Turner. Real-time,
continuous level of detail rendering of height fields. In Sggraph, pages 109-118, New Orleans,
August 1996. ACM.

[6] D. Luebke. View dependent simplification of arbitrary polygonal environments. In Sggraph.
ACM, 1997. To appear; pre-print provided by the Author.

[7] C.M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann, San
Mateo, California, 1989.

[8] L. De Floriani, B. Falcidieno, and C. Pienovi. Delaunay-based representation of surfaces defined
over arbitrarily shaped domains. Computer Vision, Graphics, and Image Processing, 32:127—
140, 1985.

[9] M. Garland and P. Heckbert. Fast polygonal approximation of terrains and height fields. Technical
Report CMU-CS-95-181, Carnegie Mellon University, September 1995.

[10] H. Hoppe. View dependent refinement of progressive meshes. In Sggraph. ACM, 1997. To
appear; pre-print provided by the Author.

[11] R.E. Tarjan. Data Sructures and Network Algorithms. Number 44 in CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, 1983.

Figure 6: (complement to Fig.1) A, B: Vertex forests: vertices connected by marked edges
simplify to the same location. C, D: Triangles of the same color have the same pc-rep, or
root; grey triangles are roots.

