
Image-Based Object Editing

Holly Rushmeier Jose Gomes Laurent Balmelli Fausto Bernardini Gabriel Taubin

IBM T.J. Watson Research
P.O. Box 704, Yorktown Heights, NY 10598

hertjwr,josegome,balmelli,fausto@us.ibm.com

Abstract

We examine the problem of editing complex 3D objects.
We convert the problem of editing a 3D object of arbitrary
size and surface properties to a problem of editing a 2D
image. We allow the user to specify edits in both geometry
and surface properties from any view and at any resolution
they find convenient, regardless of the interactive rendering
capability of their computer. We use specially-constrained
shape from shading algorithms to convert a shaded image
specified by the user into a 3D geometry.

1 Introduction

Scanning devices can capture models of up to billions
of vertices with accompanying surface properties [1]. The
editing of such complex 3D objects is a challenging user
interface problem. Engineers and technicians are no longer
the only population that want to edit complex models. Ob-
ject editing may be required by historians or archaeologists
to study and evaluate conjectures about digitized artifacts
[2]. We present an image-based method for editing complex
3D objects. Our approach decouples object complexity and
the interactive display capabilities of the user’s computer.
Most importantly, it also allows the use of familiar image
editing tools, making 3D editing easily accessible to a wider
range of users.

One reason that 3D object editing is difficult is that
it is now common for models to consist of hundreds of
megabytes or more. While numerous simplification meth-
ods have been developed, many objects overwhelm render-
ing systems when displayed with full visual quality. In the
method presented in this paper, complex objects are repre-
sented by triangle meshes of arbitrary size associated with
an atlas of images which define surface details and appear-
ance properties. The geometric representation of the object
is not exposed to the user. The user specifies edits by posi-
tioning a simplified model and generating a detailed image

at arbitrary resolution. The user edits the detailed image to
specify object edits. The edited image is then used to update
the 3D model.

The second reason the problem is difficult is that a user
is trying to modify an object in 3D with either a 2D or an
imprecise 3D interface device. Large scale general changes
in shape are readily indicated, but fine scale editing over a
large region is difficult. In 2D, a gesture by the user needs to
be interpreted as a 3D operation – such as pushing, pulling
or cutting an object. In 3D, the response the user has us-
ing common haptic devices is limited compared with true
physical modeling such as shaping clay or chiseling stone.

We explore the problem of object editing to achieve a
particular visual effect. Our motivating application is vir-
tual restoration of museum artifacts, as illustrated in Fig.
11. The user wants to change the object to look a partic-
ular way, rather than trying to achieve a mechanical effect
such as fitting into another part. A direct way to express the
visual effect is to alter an image of the object to how the
user envisions it after modification. Since the object is not
updated during the edits, the editing operation is not lim-
ited by the user’s computer’s 3D rendering capabilities, and
the user does not need to be aware of the object’s numerical
representation.

2 Previous Work

In this section we review relevant previous work relating
images and geometry that we build on to develop our image-
based object editing system.

Systems for 2D image painting and editing have evolved
over several decades [3]. While a variety of commercial
systems are available, they share a common set of user tools.
Commercial products, building on the work of Hanrahan
and Haberli [4], have extended these 2D paint tools to paint-
ing multiple layers of appearance attributes (color, bumps,
shininess etc.) on 3D objects. Some 3-D paint programs
(e.g. DeepPaint3D ™) offer the option of a “projection
paint” mode that allows the user to export 2D images of

an object from an arbitrary view to a 2D image editing pro-
gram to edit the object texture layers with a full array of 2D
imaging tools. The projection paint system then projects the
user’s texture edits back onto the maps associated with the
3D model.

Recognizing the success of 2D paint programs, re-
searchers in 3D geometric editing have adapted successful
tools such as cut-and-paste and other image operations to
3D editing toolkits. However, these systems use the 2D
toolkits as inspiration, rather than giving users the ability
to edit geometry from within an existing 2D editing sys-
tem. Some systems allow users to use 2D systems to cre-
ate 2.5D surfaces by interpreting painted intensity values as
heights. These systems are indirect, however, because gray-
scale coded heights do not correspond to a shaded rendering
of an object.

With the interest in recent years in image-based model-
ing and rendering, many efforts have explored how geom-
etry and images can be beneficially combined. Various re-
searchers have considered how limited geometric informa-
tion can be used to enhance image editing systems. Oh et al.
present a system that allows a user to add depth information
that is used in an enhanced photo-editing system [5]. Seitz
and Kutulakos [6] describe a method that uses a crude inter-
mediate geometric representation to facilitate the simulta-
neous editing of multiple views of an object. There has also
been a lot of interest in refining methods from computer vi-
sion for geometric object creation, such as the method of
Debevec et al. [7]. While methods from computer vision
have been successful for creating 3D objects, most meth-
ods do not lend themselves to editing 3D objects.

It is natural to ask the user to edit a single image of
the shape as they want to see it. The method from com-
puter vision which extracts an object from a natural image
is shape from shading [8]. A wide variety of shape from
shading algorithms exist, but have not gained popularity in
capture systems because they are not robust in the presence
of effects such as spatially varying albedo, uncertainty in
light source direction and surfaces with discontinuities. Van
Overveld [9] makes compelling arguments for an image-
based geometric editing system, but rejects the use of shape
from shading as too time consuming. Instead, Van Overveld
proposes a specialized system in which a user paints gradi-
ents directly and is required to define an integrable surface
at each step in the editing process. This constrains interme-
diate edits, and disallows the use of general 2D paint pro-
grams.

We present how the shape from shading problem can be
formulated and constrained to be usable for image-based
object editing. Our new approach allows 3D object editing
to be performed in any 2D image editing program.

Select View
Generate Hi Res

Render

Edit Lit

Gray Scale

Apply

Shape-From-Shading

Edit Diffuse

Reflectance Map

Update

Geometry+Maps

Figure 1. Image-based object editing work-
flow.

Figure 2. Top row: Partitioned triangle mesh
(left), diffuse reflectance(center), simplified
geometry (right); Bottom row: Model lit us-
ing normal maps for two lighting conditions
(left and center), a complete object rendering
(right.)

3 System Overview

Figure 1 shows the process of defining and processing
an object edit in our system. We describe the system for a
form of surface representation produced by a particular 3D
scanning system, although the approach can be applied to
the geometric output of any scanning system.

3.1 Object Representation and Viewing

We consider models that are generated by scanning sys-
tems similar to the system described in [10]. The geom-
etry of the object is represented as a triangle mesh. The
mesh is partitioned into charts that are each a height field.
An atlas of surface maps representing diffuse surface re-
flectance and high spatial resolution normals are associated
with the charts using a standard texture coordinate scheme.

An example of a partitioned surface and an associated atlas
is shown in the top row of Fig. 2. We show the colored map
that gives the diffuse (i.e. Lambertian) surface reflectance.
There are also maps with the same structure that store the
surface normals at a higher resolution than the base geome-
try. These high resolution normals were obtained by a sepa-
rate photometric system attached to the shape-scanning de-
vice used to capture the base triangle mesh. On the far right
of the first row, we show a simplified version of the geome-
try that is provided with the full model. In the second row of
Fig. 2 renderings of the detailed geometry represented in the
normal maps are shown for two lighting conditions (left and
center images), and the right most image shows the result of
rendering using the geometry, normal maps and colored dif-
fuse reflectance map.

The objects we consider may be too large to render in-
teractively with all of the associated surface texture maps.
We separate the selection of the view and the lighting of
the image to be edited. First, to inspect the object we use a
3D viewer to position the geometrically simplified version
of the object, and save the camera parameters for a view we
wish to inspect in greater detail. An off-line renderer is then
used to generate a high resolution multi-channel image for
the camera view. The multi-channel image includes three
color channels for the reflectance and additional channels
for surface normals and surface z-depth from the camera.
These images are not exposed directly to the user, but are
supplied to an image-based relighting system [10] that the
user employs to determine a light direction for performing
the object edits. The images above the horizontal rule in
Fig. 3 show a small region on the object being targeted, and
the shaded image of the geometry (using both the full geom-
etry and normal map details) and colored diffuse reflectance
map generated for the view and lighting direction selected
by the user.

3.2 Editing Scenarios

Given a rendering for a particular viewpoint and light
source, the user performs edits to geometry and diffuse re-
flectance in two phases. First the user edits the gray-scale
diffuse rendering of the geometry. The image is generated
by our relighting system, so we can ensure that the pixel val-
ues are linear with the luminance. In the section of Fig. 3
below the horizontal rule the editing of the image of the lit
geometry using a 2D paint program with tools such as cut
and paste and image blur is shown. We are filling a chip
in the head of the sculpture, and covering the filled area
with the ringed pattern that appears in the surrounding re-
gion. Next, the diffuse reflectance map is updated by the
user. The result of editing the diffuse reflectance map to
delete the black area associated with the chip is also shown
in Fig. 3.

Figure 3. Above horizontal rule: simplified
geometry, shaded geometry and diffuse re-
flectance to be edited. Below horizontal rule:
editing shaded geometry with a 2D paint pro-
gram, and edited diffuse reflectance. Bottom
row: the difference of original and edited im-
ages of lit geometry (left), thresholded differ-
ence image (center) and section of the geom-
etry to be updated (right).

It is possible that the luminance of some pixels will not
change, even though a change in the geometry at that pixel
is intended. In the bottom row of Fig. 3 on the left we show
the difference between the original and edited geometry im-
ages. The center image shows the results of thresholding the
difference image. We use image dilation and painting to fill
in the full area in which we would like to have the geometry
change. This is shown in red on the far right. This“hints”
image will indicate to the shape from shading solver the
area in which changes are to be made.

To ensure that the edited object will remain a manifold
we require that edited areas in the image are bounded by
fixed depth map values and do not include depth discon-
tinuities. An editing scenario with these considerations is
shown in Fig. 4. Areas that cannot be edited for a view
are marked in blue, as shown in the shaded geometry im-
age Fig. 4b. Within these constraints, any image operation

a b c d

e f g h

Figure 4. Editing: (a) The diffuse reflectance,
(b) shaded geometry, (c)and (d) new nose in-
serted using photograph of a nose, (e) and
(f) new nose using an image of a nose from
another model, (g) edited diffuse reflectance
map (h) and “hints" image.

is acceptable – blurring, sharpening, image cut-and-paste,
painting, etc. In Fig. 4 we show the replacement of the nose
of the figure with two types of input. In Fig. 4c and d, we
start with an image of a real nose, take one side of it, alter
and smooth the shading, and then use it to replace the nose
section on the head. Note that the albedo and lighting of the
source image for the nose are unknown. In Fig. 4e and f we
take an example from a shaded image of another model. We
alter the shading and change the aspect ratio of the image to
fit it into the missing nose area. Figure 4g shows the edited
diffuse reflectance map and h shows the extent the edits to
apply for these two alternative noses.

Figure 5. Left: initial heights for the exam-
ple in Fig. 4. Center: rough estimate of new
shape painted by user. Right: the resulting
height field for the first edit.

For larger scale edits such as the ones shown in Fig. 4
we can further assist the shape from shading solution by

specifying an initial guess for the solution by painting on an
image of the area with pixels given gray values proportional
to height, as shown in Fig. 5. On the left is an image of the
original height field. This image shows clearly why editing
grey scale encoded heights directly is not suitable for defin-
ing fine edits. The main feature that is visible is the sharp
change in height where the nose is broken. The image in the
center has been painted to indicate crudely the change in the
object by smoothing out this sharp feature. The image on
the right shows the height field resulting after applying the
edit in Fig. 4c and d using shape from shading.

3.3 Shape from Shading

The diffuse reflectance map edits can be applied directly
to update the original object. However, the grayscale ed-
its must be converted into an updated depth map before the
edits can be applied. To determine the new depths for the
edited region, we solve the classic shape from shading prob-
lem. Shading is the variation of brightness across the photo-
graph resulting from the local variation of the orientation of
the surface with respect to the light sources and the camera.
This question has been explored extensively as described in
a textbook [11] and a recent survey [8].

Let us identify the aspects of the theory relevant to
image-based geometric editing. The factors accounting for
shading are the lighting conditions, the object shape, its ma-
terial reflectance properties, and the camera properties. Iso-
lating the shape information is too difficult in general and
the problem needs to be simplified a great deal. The ap-
proach that has been most successful is to assume that the
light source is bounded and at an infinite distance (i.e. a
directional light), that the object has a smooth shape and is
Lambertian, that there is no occlusion boundary, that the so-
lution is known on the boundary of the resolution domain,
and finally, that the camera performs an orthographic pro-
jection.

By design, all these conditions except the last are ideally
met in our application. We are not dealing with a natural
photograph but with an artificial image. In our retouching
application, we use a perspective camera for more realism,
but the spatial extent of the edits is relatively small and we
approximate the camera locally by an orthographic model.
The usual approximate model of shape from shading for real
photographs becomes a better model for image-based geo-
metric editing because the only approximation is the camera
model.

Let us recall this model. Consider an open set Ω ∈ R
2

of image pixels corresponding to an entirely visible and lit
part S of the depicted object surface. The brightness of the
rendered image is then given by I(p) = n(x) ·L, where the
point x ∈ S projects onto the pixel p ∈ Ω, n(x) is a unit
normal to S at x, L is a unit vector representing the light

direction, and . denotes the scalar product of two vectors.
Note that there are two distinct definitions of n in our

framework. Indeed, we represent S as the union of a num-
ber of triangulated patches and the associated normal maps.
The normal maps arise from “photometric stereo”, i.e. from
a set of real photographs. We shall denote by np these “pho-
tometric normals”. But n can be computed from the trian-
gulation as well. We denote by ng the “geometric normals”.
The motivation for this distinction is that np is sampled at
a higher resolution, typically we have 10 pixels per trian-
gle. Ideally, the brightness equation should be satisfied by
both normals, i.e. I(p) = L · ng(x) and I(p) = L · np(p).
The first equation should allow the underlying geometry to
be recovered, while the second should yield a more precise
description of the normals, accounting for details that are
smaller than the resolution of the triangulation. We do not
solve the second equation alone because photometric nor-
mals do not necessarily integrate to a valid surface, and so
will not necessarily yield the underlying geometry. Their
role is only to describe the small details. That said, the
two normals should agree to an extent and the two solutions
must be somewhat coupled.

It is convenient to solve both equations in the image grid,
and this also makes it more natural to deal with multiple res-
olutions. We do this by using the depth map z to compute
the geometric normals. The photometric normals are read-
ily available on the image grid. It is well known that the
shape from shading problem can be ill-posed, depending on
the data. In the case of image-based geometric editing, we
can expect to encounter situations where no solution exists
or multiple solutions exist because a hand-defined shading
might be incompatible with any realizable surface or be de-
generate. This motivates the use of a variational method
to look for the “best” surface, in a sense to be made more
precise. In addition, variational methods result in iterative
algorithms, making it easy to take advantage of an initial
guess provided by the user. This is an essential feature of
our method as, in practice, it solves the ill-posedness of
the shape from shading. Our contribution consists only of
the specific integration of known ideas, so we shall only
describe briefly the variational method used and point the
reader to previous work for details.

We consider a 2D vector field u defined on Ω, presum-
ably equal to ∇z, and look for a smooth integrable solution
by minimizing

∫
Ω

α(I − L · ng(u))2 + β(∇⊥ · u)2 + γ(Du)2,

where ng(u) = (||u||2 +1)−
1
2 (−u, 1), ∇⊥ =

(
∂
∂y ,− ∂

∂x

)
,

Du is the Jacobian of u and α, β and γ are scalar weights.
The first term accounts for the fidelity to the shading.

The Euclidean norm is used for the sake of simplicity. The

second term accounts for the integrability of u and it is cru-
cial to deal with inconsistent shadings. The last term is a
regularization penalty which accounts for the smoothness
of the solutions. As explained in [11], this term is known to
distort the solution in the ideal case of synthetic data but will
select a smooth solution in more realistic cases. See [11]
and [12] for further details on deriving the Euler-Lagrange
equations of this integral, devising a numerical scheme to
minimize it and analyzing its stability. See [11] for details
on obtaining z from the almost integrable vector field u.

Similarly, the photometric normals np are computed by
minimizing the integral∫

Ω

µ(I − L · np)2 + ν(Dnp)2 + ψ(np − ng)2,

under the constraint ||np|| = 1, where µ, ν and ψ are scalar
weights. The first term accounts for the fidelity to the shad-
ing, the second term for smoothness and the last term cou-
ples np to ng. Another interpretation of the last term is that
it penalizes non-integrable photometric normals since ng is
the normal vector to an (almost) integrable surface. How-
ever, one might want to keep this contribution relatively
small to allow sharp variations of the photometric normals
at the expense of integrability.

As previously, a stable minimizing numerical scheme
may be derived from the corresponding Euler-Lagrange
equations. The latter are straightforward for the first and
last terms. The calculation for the second term is not obvi-
ous because of the constraint on np but it is readily available
in a paper by Tang et al. [13].

As far as the scalar weights are concerned, they are de-
fined up to a scaling factor for each equation. We have cho-
sen a set of parameters experimentally and all the examples
shown in this paper use the following: α = 1, β = 1,
γ = 0.1, µ = 1, ν = 1 and ψ = 0.01.

3.4 Applying the Edits

After shape from shading has been applied to transform
the edited image into a new shape, the new geometry depth
map, normal map and diffuse reflectance maps are used to
update the original model. The update proceeds in two steps
– updating the underlying charts and then the normal and
diffuse reflectance maps.

The process of updating the underlying mesh is illus-
trated in Fig. 6. Each existing vertex in a changed area is
moved along the line-of-sight of the edited image’s virtual
camera so that it lies on the new depth map computed from
shape from shading. The original mesh may have a reso-
lution that is either too dense or too sparse to represent the
change in geometry. After changing the position of existing
vertices, the surface could be refined or decimated to main-
tain the same level of consistency with the true geometric
surface as was represented in the original model.

Figure 6. Each mesh vertex is moved along a
ray to the camera to update the old surface to
new surface.

We need to ensure that the updates produced by the shape
from shading solution will not result in a self-intersecting
surface. Checking for self-intersections is shown in Fig. 7.
For changes in the direction of the virtual camera, as long
as the surface stays in front of the camera, no surface self-
intersection is possible. For changes in the direction away
from the camera, a check is needed against a second depth
buffer that contains the depth to the closest back-facing sur-
face.

Figure 7. Surface updates in the direction of
the camera are along a clear line of sight; up-
dates away from the camera require a depth
check.

Edits that result in a valid surface can require a reparti-
tioning of the surface for texture mapping to avoid unac-
ceptable stretching of the texture maps. Figure 8 shows
an example. Stretching of the texture map occurs when
the maximum angle between surface facets in the chart be-
comes large. An edit from an arbitrary angle can cause a
deformation that greatly increases the maximum angle be-
tween chart facets. In these cases the chart is split, as shown
in the figure, and a check can be made if the smaller portion
of the chart can be joined to one of its neighbors to avoid
splintering the model.

The process of updating the diffuse surface reflectance
and normal maps is shown in Fig. 9. The patches affected by
the edits are identified, and new normals and albedo maps
are formed for these patches. As in scanning systems and
3D projection paint systems, the edited region is projected
back onto the geometry, and then textures are replaced in
the affected areas.

Figure 8. Splitting to avoid texture stretching.

Figure 9. Updating the maps: The updates on
the edited image are projected on the geom-
etry and then back into the map associated
with that portion of the geometry.

4 Results

We implemented the system described in the previous
section in C++ using OpenGL software libraries to perform
the rendering to obtain the initial images for editing, and to
do the projections required to update the geometry and im-
age maps. All of the editing illustrated in this paper was per-
formed on a computer with a Pentium III 1.2 Ghz processor,
512 Mb of memory and no graphics hardware acceleration.

Figures 10 and 11 show the results for the small edit il-
lustrated in Fig. 3. The full object is composed of 314,246
triangles organized into 92 charts, and maps containing 2.9
million non-zero pixels that specify the diffuse reflectance
and normal at a higher spatial resolution (i.e. approximately
9 pixels per triangle.) The view to be edited was rendered
as a 512 by 512 pixel image, and 15.7% of the pixels (i.e.
41,174) were in the edited region. The shape from shading
solution took 4 minutes and 45 seconds on the Pentium III
processor. Figure 10 shows the affected charts before and
after the edit. The figure also shows the updated normal
map for two lighting conditions. The top two rows of Fig.
11 show before and after views of the edit in Fig. 3 The
original detailed close-up view is shown in the leftmost im-
ages, and the center and right images show the full model
before (top) and after (second row) with two new views and
lighting conditions.

Figure 11 also shows the results for the larger edits il-

Figure 10. Top row: the affected charts before
and after the edit specified in Fig. 3. Bottom
row: the normal map for the edited view for
various lighting conditions.

lustrated in Fig. 4. The full object is composed of 289,698
triangles organized into 70 charts, and maps containing 2.9
million non-zero pixels representing the diffuse reflectance
and normals at a higher resolution. The view to be edited
was rendered as a 512 by 769 pixel image and 6% of the
pixels were in the edited region. The shape from shading
solution was run for each alternative edit for the nose with
the same initial conditions and intial guess. In each case the
solution required approximately 2 minutes and 49 seconds
on the same Pentium III. Before and after views of the edits
are shown under different views and lighting conditions in
the lower three rows.

5 Conclusion

We have demonstrated an image-based geometric edit-
ing system. The user may use any image editor to retouch
a picture of a shape, thus specifying a shape alteration. A
special shape from shading algorithm is used to update the
initial geometric model accordingly. At the same time, the
reflectance information may be retouched by image paint-
ing. The system is most appropriate for the fine retouching
of complex existing models. We have focused on the output
of the particular scanning system, but the approach can be
applied to the geometric output of any system.

A weakness of the method is that it is limited by the abil-
ity of the user to specify a shading that is compatible with
a realizable surface. Based on our experiments, we believe
that this issue is well addressed by enforcing the integrabil-
ity and smoothness of the solution and by using a reasonable
initial guess. However, the system will not automatically
generate a high-quality result from a poorly specified input.
Our current implementation of the shape from shading al-

gorithm is slow. A multi-grid approach needs to be used to
improve the efficiency.

The strengths of this system are twofold. First, it allows
the user to express intent directly, without being exposed
to the internal representation or learning a new user inter-
face. Second, the user can comfortably retouch an image
rendered with the highest resolution since no 3D render-
ing is performed during the edit. This feature is particularly
valuable in applications where there is a need to edit models
of a size that cannot be displayed interactively in 3D.

We would like to acknowledge the Egyptian Center for
Cultural and Natural Heritage Documentation for obtaining
the scanned models of Akhenaten and the head of a queen
used as examples in this paper.

References

[1] M. Levoy et al., “The digital Michelangelo project: 3D scan-
ning of large statues,” in SIGGRAPH 2000, pp. 131–144.

[2] G. Godin, J.-A. Beraldin, J. Taylor, L. Cournoyer, M. Rioux,
S. El-Hakim, R. Baribeau, F. Blais, P. Boulanger, J. Domey,
and M. Picard, “Active optical 3D imaging for heritage ap-
plications,” IEEE Computer Graphics and Applications, vol.
22, no. 5, pp. 24–35, 2002.

[3] A. R. Smith, “Digital paint systems: and anecdotal and his-
torical overview,” IEEE Annals of the History of Computing,
vol. 23, no. 2, pp. 4–30, 2001.

[4] P. Hanrahan and P. Haberli, “WYSIWYG painting and tex-
turing on 3D shapes,” in SIGGRAPH 1990, pp. 215–223.

[5] B. M. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-based
modeling and photo editing,” in SIGGRAPH 2001, pp. 433–
442.

[6] S.M. Seitz and K.N. Kutulakos, “Plenoptic image editing,”
in 6th IEEE Intl. Conf. on Comp. Vision, 1998, pp. 17–24.

[7] P. Debevec, C. Taylor, and J. Malik, “Modeling and render-
ing architecture from photographs: a hybrid geometry- and
image-based approach,” in SIGGRAPH 1996, pp. 11–20.

[8] R. Zhang, P.-S. Tsai, J. Cryer, and M. Shah, “Shape from
shading: A survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 21, no. 8, pp. 690–706, 1999.

[9] C. W. A. M. van Overveld, “Painting gradients: Free-form
surface design using shading patterns,” in Graphics Interface
’96, 1996, pp. 151–158.

[10] F. Bernardini, H. Rushmeier, I. Martin, J. Mittleman, and
G. Taubin, “Building a digital model of Michelangelo’s Flo-
rentine Pieta‘,” IEEE Computer Graphics and Applications,
vol. 22, no. 1, pp. 59–67, 2002.

[11] B. K. P. Horn and M. J. Brooks, Eds., Shape from Shading,
MIT Press, Cambridge, MA, 1989.

[12] T. M. Strat, “A numerical method for shape from shading
from a single image,” M.S. thesis, MIT, 1979.

[13] B. Tang, G. Sapiro, and V. Caselles, “Direction diffusion,” in
7th IEEE Intl. Conf. on Comp. Vision, 1999, pp. 1245–1252.

Figure 11. Top two rows: results of edit shown in Fig. 3; Bottom three rows: results of edits shown
in Fig. 4.

