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Abstract

Very large polygonal models, which are used in more and more graphics applications today, are routinely gen-
erated by a variety of methods such as surface reconstruction algorithms from 3D scanned data, isosurface con-
struction algorithms from volumetric data, and photogrametric methods from aerial photography. In this report
we provide an overview of several closely related methods developed during the last few yers, to smooth, denoise,
edit, compress, transmit, and animate very large polygonal models.

1. Introduction

The geometric signal processing approach was originally
motivated by the problem of smoothing large irregular
polygonal meshes of arbitrary topology36, such as those
extracted from volumetric medical data by iso-surface con-
struction algorithms, or constructed by integration of multi-
ple range images, and the related problem of fair surface de-
sign. Because of the size of the typical data sets, only linear
time and space algorithms can be considered, particularly
for applications such as surface design and mesh editing,
where interactive rates are a primary concern. This constraint
on the complexity of the algorithms discards most early
algorithms based on fairness norm optimization42; 28; 13; 43,
parametric31; 26; 11; 25; 24 and implicit 1; 27 patch technology,
physics-based deformable models20; 41; 33; 30, and variational
formulations5; 28; 43; 13. In these approaches, the problem is
often reduced to the solution of a large sparse linear sys-
tem, or a more expensive global optimization problem. Large
sparse linear systems are solved using iterative methods10,
and usually result in quadratic time complexity algorithms.
However, more recent work formulations have shown effi-
cient solutions to the variational formulation based on multi-
grid algorithms21; 22, and stable implicit sparse solvers that
are competitive when agressive smoothing is required7.

Most smoothing algorithms move the vertices of the
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polygonal mesh without changing the connectivity of the
faces. The smoothed mesh has exactly the same number of
vertices and faces as the original one. The simplest smooth-
ing algorithm that satisfies the linear complexity require-
ment is Laplacian smoothing, described in detail in section
2. Laplacian smoothing is an iterative process, where in each
step every vertex of the mesh is moved to the barycenter of
its neighbors.

The only problem with Laplacian smoothing isshrinkage.
When a large number of Laplacian smoothing steps are iter-
atively performed, the shape undergoes significant deforma-
tions, eventually converging to the centroid of the original
data. The algorithm introduced by Taubin36 solves this prob-
lem and introduced the signal processing machinery neces-
sary to analyze the behavior of these smoothing processes.
This work was followed by a number of extensions40; 7 and
applications to interactive shape design46; 23; 21; 44; 22; 12, 3D
geometry compression37; 2; 19, and shape reconstruction from
multiple 3D scans3.

Within the context of interactive shape design, Zorin46 de-
fines a multi-resolution subdivision structure over an irregu-
lar mesh, using the signal processing smoothing algorithms
as the basis of his analysis process.

Guskov12 follows a different signal processing approach
over the Progressive Meshes16 structure, wherefrequency
has a completely different meaning. He is able to perform
similar filtering operations, as with the methods described in
this paper.
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In 3D geometry compression38; 39, Taubin et.al.37 use
these signal processing smoothing algorithms to predict the
position of high resolution vertices from their low resolution
counterparts in their progressive transmission scheme. Balan
and Taubin2, study the problem of constructing optimal fil-
ters in this context. Karni and Gotsman19 use the partial
Fourier expansion applied to the vertices of a mesh partition
to define a JPEG-like compression scheme for meshes.

In the area of shpe reconstruction from multiple 3D scans,
Bernardini et.al.3 define aconformingprocess to estimate
the average shape of several overlaping meshes by allowing
them to deform at very low frequency, while preserving the
details. This process is based on applying a very aggressive
smoothing filter to the deformation field that would make
each vertex of each overlapping mesh move to the average
position of vertices of other meshes in a neighborhood.

The paper is organized as follows. In section 2 we intro-
duce Laplacian smoothing withing the context of meshes. In
section 3 we show how Fourier Analysis can be performed
on signals defined on meshes and graphs. In section 4 we
discuss methods to smooth or denoise signals defined on
meshes and graphs as low-pass filtering. In section 5 we de-
scribe Taubin’sλjµ algorithm. In section 6 we discuss how
edge weights can be manipulated to compensate for irregu-
lar edge lengths and face angles. In section 7 we show that
classic filter design methods can be used to construct faster
smoothing algorithms, and other feature enhancing filters.
In section 8 we discuss how different constraints can be im-
posed to the smoothing algorithms and their relation to in-
teractive shape design. Finally, in section 9 we present our
conclusions.

2. Laplacian Smoothing

Laplacian smoothing is a well established technique to im-
prove the geometric irregularity of a 2D mesh in the field of
finite-elements meshing15. In this context, boundary vertices
of the mesh are constrained not to move, but internal vertices
are simultaneously moved to the barycenter of its neighbor-
ing vertices. And then the process is iterated a number of
times.

When Laplacian smoothing is applied to a noisy 3D
polygonal mesh without constraints, noise is removed, but
significant shape distortion may be introduced. The main
problem is that Laplacian smoothing producesshrinkage,
because in the limit, all the vertices of the mesh converge
to their barycenter.

To understand why the Laplacian smoothing algorithm re-
moves high frequency noise, why it produces shrinkage, and
how to solve the shrinkage problem, we need to develop the
basic concepts of signal processing on meshes, or more gen-
erally, on graphs.

3. Fourier Analysis on Meshes and Graphs

A graphG= (V;E), composed of a set ofn verticesV, and a
set of edgesE can be directed or undirected. The undirected
graph of a MeshM is composed of the set of mesh vertices
and the set of mesh edges as unordered pairs. In the directed
case, where the edges ofG are ordered pairs of vertices, ev-
ery edge ofM corresponds to two oriented edges ofG.

We look at the vertices ofM as a three-dimensional
graph signal v= (v1; : : :;vn)

t defined onG. In general, a
d-dimensional graph signal on a graphG is a d�n matrix
x= (x1; : : :;xn)

t , where each row ofx is regarded as the sig-
nal value at thei-th. vertex of the graph.

A neighborhoodor star of a vertex indexi in the graph
G is the seti? of vertex indicesj connected toi by an edge
(i; j).

i? = f j : (i; j) 2 Eg :

If the index j belongs to the neighborhoodi?, we say thatj
is a neighborof i. The neighborhood structure of an undi-
rected graph, such as the graph of a mesh defined above, are
symmetric. That is, every time that a vertexj is a neighbor
of vertex i, also i is a neighbor ofj. With non-symmetric
neighborhoods, which are associated with directed graphs,
certain constraints can be imposed. We discuss this issue in
detail in section 8.

The set of displacements∆vi produced by the Laplacian
smoothing step that moves each vertex to the barycenter of
its neighbors can be described as the result of applying the
Laplacian operator to the vertices of the mesh.

The Laplacian operator is defined on a graph signalx by
weighted averages over the neighborhoods

∆xi = ∑
j2i?

wi j (xj �xi) ; (1)

where the weightswi j are non-negative numbers that add up
to one for each vertex star

∑
j2i?

wi j = 1 : (2)

Since the Laplacian operatorx! ∆x is linear on the space of
graph signals defined onG, and operates on the coordinates
of x independently, it is sufficient to consider the case of one-
dimensional graph signals.

In section 6 we discuss in detail different ways of choos-
ing weights. For the time being, lets assume that the edge
weights are determined by first choosing an edge costci j =

cji � 0 for each graph edge, and then settingwi j = ci j =ci ,
whereci is the average cost of edges incident toi

ci = ∑
j2i?

ci j > 0 :

For example, if all the edges have unit costci j = 1, then for
each neighborj of i, the weightwi j is equal to the inverse of
the number of neighbors 1=ji?j of v. We organize the edge
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costs and weights as matricesC = (ci j ), W = (wi j ), with
elements equal to zero ifj is not a neighbor ofi. We also
assume that once set, the weights are kept constant during
the iterative smoothing process. We will relax this asumption
in section 6.

This choice of weights is independent of the vertex po-
sitions, orgeometry, of the mesh, and only function of the
structure of the graphG, i.e. theconnectivityof the mesh.
Note that as a result of the neighborhood normalization con-
straint of equation 2, although then�n matrix of edge costs
C is symmetric, in general the matrix of edge weigthsW is
not. We consider edge weights that are function of the ge-
ometry in section 6.

If we define the matrixK = I �W, with I the identity
matrix, the Laplacian operator applied to a graph signalx
can be written in matrix form as follows

∆x=�K x : (3)

For undirected graphs and the choice of weights described
above, the matrixK has real eigenvalues 0� k1 � k2 �
�� � � kn � 2 with corresponding linearly independent real
unit length right eigenvectorse1

; : : :;en 36. In matrix form

K E = Ediag(k) ; (4)

with E = (e1
; : : :;en

), k= (k1; : : :;kn)
t , and diag(k) the diag-

onal matrix withki in its i-th. diagonal position. Seen as one-
dimensional graph signals, these eigenvectors can be con-
sidered as thenatural vibration modesof the graph, and the
corresponding eigenvalues as the associatednatural frequen-
cies.

Sincee1
; : : :;en form a basis ofn-dimensional space, ev-

ery graph signalx can be written as a linear combination

x=
n

∑
j=1

x̂ j ej
= E x̂ : (5)

The vector of coefficients ˆx is the Discrete Fourier Transform
(DFT) of x, andE is the Fourier Matrix.

If instead of being derived from the vertices and edges
of a mesh, the graphG is a closed polygonal curve withn
vertices and edges, i.e., a cycle, we are in the classical case
of discrete-timen-periodic signals.

Fourier analysis is a natural tool to solve the problem of
signal smoothing. The space of signals is decomposed into
orthogonal subspaces associated with different frequencies,
with the low frequency content of a signal regarded as sub-
jacent data, and the high frequency content as noise. To de-
noise a signal it is sufficient to compute its DFT, discard its
high frequency coefficients, and compute the linear combi-
nation of remaning terms as the result. This is exatly what
the method ofFourier descriptors45 does to smooth a closed
curve.

In the case of closed polygonal curves the DFT of a

Laplacian(G;W;x)
new ∆x= 0;
for(e= (i; j) 2 E)

∆xi = xi +wi j (xi �xj);
end;

return ∆x;

Figure 1: Algorithm to evaluate the Laplacian operator. G=
(V;E) directed graph, W matrix of weights defined on the
edges of G, x input signal on G,∆x output signal.

LaplacianSmoothing(G;W;N;λ;x)
new ∆x
for(i = 0 ; i < N ; i = i +1)

∆x=Laplacian(G;W;x);
x= x+λ∆x;

end;
return;

Figure 2: The Laplacian Smoothing Algorithm. G graph, W
matrix of weights defined on the edges of G, N number of
iterations,λ scaling factor, x signal on G to be smoothd.

signal x can be computed very efficiently using the Fast
Fourier Transform (FFT) algorithm32, and the eigenvalues
and eigenvectors ofK can be computed analytically. In gen-
eral, the matrixK is large, and although sparse, it is almost
impossible to reliably compute its eigenvalues and eigenvec-
tors. This makes it impractical to smooth vertex positions of
large meshes with the Fourier descriptors method.

Note that even using the FFT algorithm in the closed
polygonal curve case, the computational complexity is
O(nlog(n)), i.e., not linear.

4. Smoothing as Low Pass Filtering

Figure 4 describes the algorithm to evaluate the Laplacian
operator on a signalx defined on a directed graphG, with
given weight matrixW. And figure 4 describes the Laplacian
smoothing algorithm, with a scaling factor 0< λ < 1 which
is used to control the speed of the diffusion process. With this
parameter, one step of the Laplacian smoothing algorithm
can be described in matrix form as follows

x1
= x+λ∆x= (I �λK) x= f (K)x ; (6)

where f (K) is a matrix obtained by evaluating the univari-
ate polynomial f (k) = 1� λk in the matrixK. If the pro-
cess is iteratedN times, the output can still be expressed
asxN

= f (K)x, but with a different univariate polynomial
f (k) = (1�λk)N.

A Linear Filter is defined by a univariate functionf (k)
that can be evaluated on the square matrixK to produce an-
other matrix of the same size. Although many functions of
one variable can be evaluated in matrices10, in this section
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TaubinSmoothing(G;W;N;λ;µ;x)
new ∆x
for(i = 0 ; i < N ; i = i +1)

∆x= Laplacian(G;W;x);
if i is even

x= x+λ∆x;
else

x= x+µ∆x;
end;

return;

Figure 3: The Taubin Smoothing Algorithm. G graph, W ma-
trix of weights defined on the edges of G, N number of itera-
tions,λ and µ scaling factors, x signal on G to be smoothd.

we only consider polynomials. In section 7 we also con-
sider rational functions. The functionf (k) is the transfer
functionof the filter. It is well known that for any of these
functions, the matrixf (K) has as eigenvectors the eigenvec-
torse1

; : : :;en of the matrixK, and as eigenvalues the result
f (k1); : : :; f (kn) of evaluating the function on the eigenval-
ues ofK. Since for any polynomial transfer function

x0 = f (K)x=
n

∑
i=1

f (ki)x̂i e
i
;

becauseKei
= kie

i , to define a low-pass filter we need to
find a polynomial such thatf (ki) � 1 for low frequencies,
and f (ki) � 0 for high frequencies in the region of interest
k2 [0;2].

In the case of Laplacian smoothing, where the transfer
function is f (k) = (1� λk)N, with 0 < λ < 1, we see that
for everyk 2 (0;2], we have(1� λk)N ! 0whenN !1
becausej1� λkj < 1. This means that all the frequency
components, other than the zero frequency component (the
barycenter of all the vertices), are atenuated for largeN. On
the other hand, the neighborhood normalization constraint
of equation 2 implies that the matrixK always has 0 as its
first eigenvalue with associated eigenvector(1; : : :;1)t , and
the zero frequency component is preserved without changes
becausef (0) = 1 independently of the values ofλ andN.
In conclusion Laplacian smoothing filters out too many fre-
quencies.

5. The λjµ Algorithm

Taubin 36 proposed the following second degree transfer
function to solve the problem of shrinkage

f (k) = (1�λk)(1�µk) ; (7)

which can be implemented as two consecutive steps of
Laplacian smoothing with different scaling factors; the first
one withλ > 0, and the second one withµ< �λ < 0. That
is, after the Laplacian smoothing step with positive scale
factor λ is performed (shrinking step), a second Laplacian

k=
1
µ

f (k)
1:0

k =
1
λ

0 kPB2 0 kPB 2

f (k)1:0

A B

Figure 4: Graph of transfer functions for theλjµ algo-
rithm. (A) f(k) = (1�µk)(1�λk). (B) f(k) = ((1�µk)(1�
λk))N=2 with N> 1.

smoothing step with negative scale factorµ is performed (un-
shrinking step). Figure 5 describes the algorithm.

The graph of the transfer function of equation (7) is illus-
trated in figure 4-A. Figure 4-B shows the resulting transfer
function afterN iterations of the algorithm. Sincef (0) = 1
andµ+ λ < 0, there is a positive value ofk, let us denote
it kPB (thepass-band frequency), such thatf (kPB) = 1. The
value ofkPB is

kPB =
1
λ
+

1
µ
> 0 : (8)

The graph of the transfer functionf (k) shown in Figure 4-
B displays a typicallow-pass filtershape in the region of
interestk2 [0;2]. Thepass-band regionextends fromk = 0
to k = kPB, where f (k)� 1. As k increases fromk = kPB to
k = 2, the transfer function decreases to zero. The faster the
transfer function decreases in this region, the better. The rate
of decrease is controlled by the number of iterationsN.

For example, choosingλ so thatf (1) =� f (2), i.e.,

0= f (1)+ f (2) = 1�3(λ +µ)+5λµ ; (9)

ensures a stable and fast filter40. A typical value forkPB is
0:1. The corresponding typical scaling factor values are then
computed from equations 8 and 9.

Figures 5 and 6 show examples of large surfaces smoothed
with this algorithm. Figures 5 is a synthetic example, where
noise has been added to one half of a polyhedral approxi-
mation of a sphere. Note that while the algorithm progresses
the half without noise does not change. Figure 6 was con-
structed from a CT scan of a spine. The boundary surface of
the set of voxels with intensity value above a certain thresh-
old is used as the input signal. Note that there is not much
difference between the results after 50 and 100 iterations.

6. Weights

With Equal weights, determined by unit edge costs, very sat-
isfactory results are obtained on meshes which display very
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A B

C D

Figure 5: (A) Sphere partially corrupted by normal noise.
(B) Sphere (A) after 10 non-shrinking smoothing steps. (C)
Sphere (A) after 50 non-shrinking smoothing steps. (D)
Sphere (A) after 200 non-shrinking smoothing steps. Sur-
faces are flat-shaded to enhance the faceting effect.

small variation in edge length and face angles across the
whole mesh, such as those shown in figures 5 and 6. When
these assumptions are not met, local distortions are intro-
duced. The edge weights can be used to compensate for the
irregularities of the teselation, and produce results which are
function of the local geometry of the signal, rather than the
local parameterization.

Fujiwara weightstry to compensate for irregular edge
lengths by determining the edge costs as a function of the
edge lengthci j = φ(kvj � vik). For example, both Taubin
36 and Fujiwara9 propose choosing the inverse of the edge
lengthφ(t) = 1=t as the function, which makes the Laplacian
operator independent of the edge lengths, and only depen-
dent on the directions of the vectors pointing to the neigh-
boring vertices. This weighting scheme does not solve the
problems arising from unequal face angles.

Desbrun weightscompensate not only for unequal edge
lengths, but also for unequal face angles. Laplacian smooth-
ing with equal edge costs tends to equalize the lengths of
the edges, and so, tends to make the triangular faces equi-
lateral. The vertex displacements produced by the Laplacian
operator can be decomposed into a normal and a tangencial
component. In some cases the edge equalization may be the
desired effect. This is the case when mesh smoothing is used
to improve the quality of finite-elements mesh. But in other

A B

C D

Figure 6: (A) Boundary surface of voxels from a CT scan.
(B) Surface (A) after 10 non-shrinking smoothing steps. (C)
Surface (A) after 50 non-shrinking smoothing steps. (D) Sur-
face (A) after 100 non-shrinking smoothing steps. kPB = 0:1
andλ = 0:6307in (B), (C), and (D). Surfaces are flat-shaded
to enhance the faceting effect.

cases, such as when a texture is mapped onto the mesh, hav-
ing a non-zero tangencial component is undesirable. Based
on a better approximation to the curvature normal, Desbrun7

proposes the following choice of edge costs

ci j = cotαi j +cotβi j ; (10)

whereαi j andβi j are the two angles opposite to the edgee=
(i; j) in the two triangles havinge in common. This choice
of weights produces no tangencial drift when all the faces
incident to the vertex are coplanar.

The three weighting schemes described in this section can
be applied to both Laplacian smoothing and Taubin smooth-
ing, but bot Fujiwara weights and Desbrun weights must be
recomputed after each iteration, or after a small number of
iterations. This makes the whole smoothing process a non-
linear operation, and computationally more expensive.

An interactive implementation of these techniques is
available as a Java applet34. Figure 7 shows a screen shot
of this applet.

Guskov12 proposed another weighting scheme based on
divided differences, but applies to a smoothing process based
on a second order neighborhood.
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Figure 7: Implementation of some of the techniques de-
scribed in this paper as a Java applet34.

FirFilter(G;W;N; f ;x)
new x0

= x
new x1

= Laplacian(G;W;x0
);

new x2
= x0�0:5x1

new x= f0x0
+ f1x1

for(i = 2 ; i < N ; i = i +1)
x2

=Laplacian(G;W;x1
);

x= x+ fix
2;

x0
= x1;

x1
= x2;

end;
return;

Figure 8: The FIR Filter Algorithm of Taubin et.al.40. G
graph, W matrix of weights defined on the edges of G, N
number of iterations, f= ( f0; : : :; fN�1) polynomial coeffi-
cients in Chebyshev basis, x signal on G to be filtered.

7. Fast Smoothing as Filter Design

In the λjµ algorithm different combinations of the parame-
tersλ, µ, andN produce almost identical transfer functions
f (k). For example if the scaling factorsλ is reduced in mag-
nitude, and thenµ is recomputed to keep the pass-band fre-
quency unchanged using equation 8, an equivalent result can
be achieved with more iterations40.

Taubin et.al.40 showed how to efficiently implement any
polynomial transfer function expressed as a linear combina-
tion of Chebyshev polynomials6. Figure 7 describes the al-
gorithm. Chebyshev polynomials are numerically more sta-
ble than the power basis, and are defined by a three term
recursion that results in an algorithm with low storage use

IirFilter(G;W;Ng;g;Nh;h;x)
FirFilter(G;W;Ng;g;x)
new x1

= x;
new H = h(K);
solve Hx= x1;

return;

Figure 9: The IIR Filter Algorithm Taubin et.al.40. G graph,
W matrix of weights defined on the edges of G, N number
of iterations, g= (g0; : : :;gNg�1) and h= (h0; : : :;hNh�1)

polynomial coefficients in Chebyshev basis, x signal on G to
be filtered.

and linear complexity8<
:

T0(w) = 1
T1(w) = w
Tj(w) = 2wTj�1(w)�Tj�2(w)

(11)

Since the domain of Chebyshev polynomials isw 2 [0;1],
the following change of variable is necessaryw= 1�k=2.

The ability to efficiently implement any polynomial trans-
fer function, reduces the problem of minimizing the num-
ber of iterations to a univariate polynomial approximation
problem, i.e., to the classical problem of Finite Impulse Re-
sponse (FIR) filter desgin in signal processing29. As an ex-
ample, Taubin et.al.40 showed how to design filters based
on the classical Window-based method14, but other polyno-
mial approximation technique can be used to design stable
FIR filters. For example, The Parks-McClellan algorithm18

uses the Remez exchange algorithm and Chebyshev approx-
imation theory to design filters with an optimal fit between
the desired and actual frequency responses. The filters are
optimal in the sense that the maximum error between the de-
sired frequency response and the actual frequency response
is minimized. Filters designed this way exhibit an equirip-
ple behavior in their frequency responses and are sometimes
called equiripple filters.

The only problem with FIR filters is that high degrees are
usually needed to obtain a good approximations of ideal fre-
quency responses with sharp transitions, such as low-pass
filters with a narrow pass-band. Infinite Impulse Response
filters (IIR), with rational transfer functions with polynomi-
als of low degree, solve this problem. In our case, if the trans-
fer function is a ratio of two polynomialsf (k) = g(k)=h(k),
with h(k) 6= 0 for k 2 [0;2], filtering a signalx corresponds
to solving the following system of equations

h(K)x0 = g(K)x : (12)

Evaluation of this filter can be performed in three steps. First,
if g(k) is not constant, the right hand side of this equation is
evaluated with the FIR algorithm of Taubin et.al.x1

= g(K)x.
Then the the matrixH = h(K) has to be constructed, and fi-
nally the linear system of equationsHx = x1 is solved. Fig-
ure 7 describes this algorithm. In this context, IIR filters only
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makes sense if the polynomialh(k) is of very low degree,
i.e., if the matrixH is sparse. Some sparse linear solvers only
need the to evaluate the product of the matrixH by a vector.
In that case the matrixH does not need to be constructed
explicitly, and the FIR algorithm of Taubin et.al. can be used
again to evaluate this filter as many times as necessary by
the linear solver.

The Implicit Fairing method of Desbrun et.al.7 is a par-
ticular case this type of filter. It corresponds to the classical
Butterworth filter with transfer function

f (k) =
1

1+(k=kPB)
N : (13)

Desbrun et.al. development is based on a PDE formulation.
They show that the Laplacian smoothing algorithm corre-
sponds the solution of the diffusion process

∂x
∂t

= λdt∆x ;

using theforward Euler method

x0 = x+λdt∆x= (I +λdt∆)x ;

with unit time stepdt = 1. They use thebackward Euler
methodinstead, which requires the solution of the linear sys-
tem

(I �λdt∆)x0 = x ;

but is stable for arbitrary large time steps, as opposd to the
explicit scheme which is stable only forjλdtj< 1. Although
having to solve a sparse linear system per step, as apposed
to multiplying by a sparse matrix, seems to slow down the
computation, they report computational time similar or bet-
ter than the explicit method.

8. Constraints

The ability to impose constraints to the smoothing process,
such as specifying the positions of some vertices, or nor-
mal vectors, specifying ridge curves, or the behavior of the
smoothing process along the boundaries of the mesh, is
needed in the context of free-form interactive shape design.

All the methods described so far allows the signals to
freely evolve without imposing any constraint. For example,
although shrinkage prevention minimizes the problem in the
λjµalgorithm, all the smooth signal values are different from
the original ones.

Taubin 36 shows that by modifying the neighborhood
structure certain kind of constraints can be imposed without
any modification of the algorithm, while other constraints
that require minor modifications and the solution of small
linear systems.

Kobbelt 21; 22 formulates the problem as an energy min-
imization problem, and solves it efficiently with a multi-
resolution approach on levels of detail hierachies generated
by decimation.

Kuriyama 23 and Yamada44 impose hard constraints on
vertex positions, but modify the displacement produced by
the Laplacian operator to impose soft normal constraints.

We will only discuss here some of these methods.

8.1. Interpolatory Constraints

A simple way to introduce interpolatory constraints in the
smoothing algorithm is by using non-symmetric neighbor-
hood structures. If no other vertex is a neighbor of a certain
vertexv1, i.e., if the neighborhood ofv1 is empty, then the
valuex1 of any signalx does not change during the smooth-
ing process, because the Laplacian operator∆x1 is equal to
zero by definition of empty sum. Other vertices are allowed
to havev1 as a neighbor, though.

Figure 10: Example of surfaces designed using subdivi-
sion and smoothing steps with one interpolatory constraint.
(A) Skeleton. (B) Surface (A) after two levels of subdivi-
sion and smoothing without constraints. (C) Same as (B) but
with non-smooth interpolatory constraint. (D) Same as (B)
but with smooth interpolatory constraint. Surfaces are flat-
shaded to enhance the faceting effect.

Figure 10-A shows a skeleton surface. Figure 10-B shows
the surface generated after two levels of refinement and
smoothing using our smoothing algorithm without con-
straints, i.e., with symmetric first-order neighborhoods. Al-
though the surface has not shrunk overall, the nose has been
flattened quite significantly. This is so because the nose is
made of very few faces in the skeleton, and these faces meet
at very sharp angles. Figure 10-C shows the result of ap-
plying the same steps, but defining the neighborhood of the
vertex at the tip of the nose to be empty. The other neigh-
borhoods are not modified. Now the vertex satisfies the con-
straint – it has not moved at all during the smoothing process
–, but the surface has lost its smoothness at the vertex. This
might be the desired effect, but if it is not, instead of the
neighborhoods, we have to modify the algorithm.

8.2. Smooth Interpolation

We look at the desired constrained smooth signalxN
C as a sum

of the corresponding unconstrained smooth signalxN
= F x

c
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afterN steps of our smoothing algorithm (i.e.F = f (K)
N),

plus a smooth deformationd1

xN
C = xN

+(x1�xN
1 )d1 :

The deformationd1 is itself another discrete surface signal,
and the constraint(xN

C)1 = x1 is satisfied if(d1)1 = 1. To
construct such a smooth deformation we consider the signal
δ1, where

(δi) j =

�
1 j = i
0 j 6= i

:

This is not a smooth signal, but we can apply the smoothing
algorithm to it. The result, let us denote itFn1, the first col-
umn of the matrixF, is a smooth signal, but its value at the
vertexv1 is not equal to one. However, since the matrixF is
diagonally dominated,F11, the first element of its first col-
umn, must be non-zero. Therefore, we can scale the signal
Fn1 to make it satisfy the constraint, obtaining the desired
smooth deformation

d1 = Fn1F�1
11 :

Figure 10-D shows the result of applying this process.

When more than one interpolatory constraint must be im-
posed, the problem is slightly more complicated. For sim-
plicity, we will assume that the vertices have been reordered
so that the interpolatory constraints are imposed on the first
mvertices, i.e.,(xN

C)1 = x1; : : :; (x
N
C)m = xm. We now look at

the non-smooth signalsδ1; : : :;δm, and at the corresponding
faired signals, the firstm columns of the matrixF = f (K)

N.
These signals are smooth, and so, any linear combination of
them is also a smooth signal. Furthermore, sinceF is non-
singular and diagonally dominated, these signals are linearly
independent, and there exists a linear combination of them
that satisfies them desired constraints. Explicitly, the con-
strained smooth signal can be computed as follows

xN
C = xN

+FnmF�1
mm

0
B@

x1�xN
1

...
xm�xN

m

1
CA ; (14)

whereFrs denotes the sub-matrix ofF determined by the first
r rows and the firsts columns.

To minimize storage requirements, particularly whenn is
large, and assuming thatm is much smaller thann, the com-
putation can be structured as follows. The smoothing algo-
rithm is applied toδ1 obtaining the first columnFδ1 of the
matrix F. The firstm elements of this vector are stored as
the first column of the matrixFmm. The remainingm�n ele-
ments ofFδ1 are discarded. The same process is repeated for
δ2; : : :;δm, obtaining the remaining columns ofFmm. Then
the following linear system

Fmm

0
B@

y1
...

ym

1
CA =

0
B@

x1�xN
1

...
xm�xN

m

1
CA

is solved. The matrixFmm is no longer needed. Then the re-
maining components of the signaly are set to zeroym+1 =

� � �= yn = 0. Now the smoothing algorithm is applied to the
signaly. The result is the smooth deformation that makes the
unconstrained smooth signalxN satisfy the constraints

xN
C = xN

+F y :

8.3. Smooth Deformations

Note that in the constrained smoothing algorithm described
above the fact that the values of the signal at the vertices of
interest is constraint to remain constant can be trivially gen-
eralized to allow for arbitrary smooth deformations of a sur-
face. To do so, if in equation (14), the valuesx1; : : :;xm must
be replaced by the desired final values of the faired signal at
the corresponding vertices. As in in the Free-form deforma-
tion approaches of Hsu, Hughes, and Kaufman17 and Borrel
4, instead of moving control points outside the surface, sur-
faces can be deformed here by pulling one or more vertices.

Also note that the scope of the deformation can be con-
trolled by changing the number of smoothing steps applied
while smoothing the signalsδ1; : : :;δn. To make the resulting
signal satisfy the constraint, the value ofN in the definition
of the matrixF must be the one used to smooth the deforma-
tions. We have observed that good results are obtained when
the number of iterations used to smooth the deformations is
about five times the number used to fair the original shape.

8.4. Hierarchical Constraints

This is another application of non-symmetric neighbor-
hoods. We start by assigning a numeric labelli to each vertex
of the surface. Then we define the neighborhood structure as
follows. We make vertexvj a neighbor of vertexvi if vi and
vj share an edge (or face),and if li � l j . Note that ifvj is a
neighbor ofvi andli < l j , thenvi is not a neighbor ofvj . The
symmetry applies only to vertices with the same label. For
example, if we assign labelli = 1 to all the boundary ver-
tices of a surface with boundary, and labelli = 0 to all the
internal vertices, then the boundary is faired as a curve, in-
dependently of the interior vertices, but the interior vertices
follow the boundary vertices. If we also assign labelli = 1
to a closed curve composed of internal edges of the surface,
then the resulting surface will be smoothalong, and on both
sides of the curve, but not necessarilyacrossthe curve. Fig-
ure 11-D shows examples of subdivision surface designed
using this procedure. If we also assign labelli = 2 to some
isolated points along the curves, then those vertices will in
fact not move, because they will have empty neighborhoods.

8.5. Tangent Plane Constraints

Although the normal vector to a polyhedral surface is not
defined at a vertex, it is customary to define it by averaging
some local information, say for shading purposes. When the
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A B

C D

Figure 11: (A) Skeleton with marked vertices. (B) Surface
(A) after three levels of subdivision and smoothing without
constraints. (C) Same as (B) but with empty neighborhoods
of marked vertices. (D) Same as (B) but with hierarchical
neighborhoods, where marked vertices have label 1 and un-
marked vertices have label 0. Surfaces are flat-shaded to en-
hance the faceting effect.

signalx in equation (1) is replaced by the coordinates of the
vertices, the Laplacian becomes a vector

∆vi = ∑
j2i?

wi j (vj �vi) :

This vector average can be seen as a discrete approximation
of the following curvilinear integral

1
jγj

Z
v2γ

(v�vi)dl(v) ;

whereγ is a closed curve embedded in the surface which
encircles the vertexvi , andjγj is the length of the curve. It is
known that, for a curvature continuous surface, if the curve
γ is let to shrink to to the pointvi , the integral converges to
the mean curvaturēκ(vi) of the surface at the pointvi times
the normal vectorNi at the same point8

lim
ε!0

1
jγεj

Z
v2γε

(v�vi)dl(v) = κ̄(vi)Ni :

The expression on the right hand side is thecurvature nor-
mal, whereκ̄(vi) is the mean curvature of the surface atvi
andNi is the surface normal atvi . It follows that the length
of the laplacian vector is equal to the product of the average

edge length times the mean curvature

∆vi =

 
∑
j2i?

wi j k(vj �vi)k

!
κ̄(vi)Ni ;

which can be used as a definition of discrete mean curvature
35.

It follows that imposing normal constraints atvi is
achieved by imposing linear constraints on∆vi . If Ni is the
desired normal direction at vertexvi after the smoothing pro-
cess, andSi andTi are two linearly independent vectors tan-
gent toNi , the surface afterN iterations of the smoothing
algorithm will satisfy the normal desired constraint at the
vertexvi it the following two linear constraints

St
i ∆vN

i = Tt
i ∆vN

i = 0

are satisfied. This leads us to the problem of smoothing with
general linear constraints.

8.6. General Linear Constraints

We consider here the problem of smoothing a discrete sur-
face signalx under general linear constraintsCxNC = c, where
C is a m�n matrix of rankm (m independent constraints),
andc = (c1; : : :;cm)

t is a vector. The method described in
section 8.1 to impose smooth interpolatory constraints, is a
particular case of this problem, where the matrixC is equal
the upperm rows of them�m identity matrix. Our approach
is to reduce the general case to this particular case.

We start by decomposing the matrixC into two blocks.
A first m�m block denotedC(1), composed ofm columns
of C, and a second block denotedC(2), composed of the re-
maining columns. The columns that constituteC(1) must be
chosen so thatC(1) become non-singular, and as well condi-
tioned as possible. In practice this can be done using Gauss
elimination with full pivoting10, but for the sake of simplic-
ity, we will assume here thatC(1) is composed of the firstm
columns ofC. We decompose signals in the same way.x(1)
denotes here the firstm components, andx(2) the lastn�m
components, of the signalx. We now define a change of basis
in the vector space of discrete surface signals as follows�

x(1) = y(1)�C�1
(1)C(2) y(2)

x(2) = y(2)
:

If we apply this change of basis to the constraint equation
C(1)x(1) +C(2)x(2) = c, we obtainC(1)y(1) = c, or equiva-
lently

y(1) =C�1
(1) c ;

which is the problem solved in section 8.2.

9. Conclusions

In this paper I described the basic elements of the signal pro-
cessing approach on meshes. It started as a solution to the
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shrinkage problem of Laplacian smoothing, and has evolved
quite significantly during the last five years, with many im-
portant contributions and extensions by many authors, and
applications to other areas. In my opinion, the main reason
for this interest has been the simplicity of the algorithms and
the good qulity of the results produced. I believe that this
area will continue evolving in the near future, with theoreti-
cal advances, new efficient algorithms, and important appli-
cations. Many concepts of classical signal processing may
see usefull applications in computer graphics and geometric
design, if efficient implementations become available. I look
forward to continue contributing to this field myself.
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