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Abstract

We address the problem of multiresolution 2D and 3D
shape representation. Shape is defined as a probability
measure with compact support. Both object represen-
tations, typically sets of curves and/or surface patches,
and observations, sets of scattered data, can be rep-
resented in this way. Global properties of shapes are
defined as expectations (statistical averages) of certain
functions. In particular, the moments of the shapes
are global properties. For any shape S; and every in-
teger d > 0; we associate a shape polynomial of degree
2d; whose coefficients are functions of the moments of
S. These polynomials are related to the shape S in an
affine invariant way. They yield small values near S
and large values far away and their level sets approxi-
mate S. With the shape polynomials we define two dis-
tances between shapes. An asymmetric distance mea-
sures how well one shape fits as a subset of another one;
a symmetric version indicates how equal two shapes
are. The evaluation of these distance measures is de-
termined via a sequence of computationally very fast
matrix operations. The distance measures are used for
recognition and positioning of objects in occluded en-
vironments.

1 Introduction

Much computer vision research has been focussed
on how to represent two-dimensional and three-
dimensional objects. Since the central problems in
model-based computer vision are object modeling, sen-
sor data (images, depth maps, etc.) generation model-
ing, and model inferencing from sensor data, the repre-
sentation of 2D and 3D shapes is a basic problem. A
useful theory of shape will also have applications in
other areas. Such applications include computer graph-
ics, design automation, manufacturing automation, ter-
rain mapping, vehicle guidance, surveillance, and in-

telligent robots.
One can distinguish bound-

ary and region/volumetric representations. For the 3D
case, the distinction between boundary and volumet-
ric representations is somewhat artificial when dealing
with visual data. What can be measured as input for a
visual system are points on the object surface, obtained
either by passive or active means [3]. If a shape-from-
x technique [1] is used, the input may be surface nor-
mals. Information about the surface of the scene, and
not about volume, is the input. Hence, the accessibility
criterion of Marr and Nishihara [16] suggests a bound-
ary representation for 3D objects. Also, Brady’s crite-
rion [8], that shape should be locally reconstructible,
suggests a boundary representation for 2D shapes. In
this paper, we will concentrate on 2D and 3D bound-
ary representations; the theory can be extended to any
dimension.

1.1 Some existing boundary representa-
tions

Let us review some 2D/3D shape representations.
A 2D object can be represented by a 1D curve that
bounds a “well-behaved” region [3]. Examples are the
chain code [13], or implicit functions describing the
2D boundary. In the 3D case, implicit functions, for
example, quadric surfaces popularized by Faugeras et
al. [12], Bolle and Cooper [5, 6], and others [9, 14, 10],
can be used to describe the surface of an object. Here, a
complex surface is represented by patches of primitive
surfaces. Superquadrics [4, 2, 7, 17], an extension of
quadric surfaces, fall in the same category. An example
of a superquadric is an ellipsoid that can smoothly de-
form into various exotic shapes. More recently, Taubin
[18] has been using high-degree polynomials which
permit the representation of complex collections of 2D
curves and 3D surfaces with a single analytic function.
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1.2 A new shape representation

A representation of an object is typically a vector of fea-
tures or a specification of the boundary of the object.
Usually, a boundary representation is given by a finite
set of curve segments and/or surface patches. Since
3D sensors provide scattered sets of points in three-
space, which can be sparse for passive stereo (using
isolated features) or tactile data, or dense for active
stereo, shape reconstruction has to be achieved from
sets of points, and the reconstruction has to be com-
pared to the representation of the object. In this pa-
per, we present a new view on boundary-based repre-
sentations of shape and observations of such shapes.
This view allows for a unified treatment of both data
sets corresponding to observations of objects and rep-
resentations of objects. In Section 2, we define shape
as a probability measure with compact support, i.e., a
distribution of mass. We define properties of shapes as
expectations, or averages, of functions in Section 3. In
particular, all the moments of a shape can be expressed
in this way. In Section 4, we construct the shape polyno-
mials from the higher-order moments of a shape. These
polynomials yield low values near the original shape
and large values elsewhere. Section 5 introduces dis-
tances between shapes by computing the expectation of
a shape polynomial, corresponding to one shape, with
respect to another shape. In Section 6, we discuss some
applications and we describe a small part of an experi-
mental 2D object recognition system.

2 Definition of shape

Let n be the dimension of the space. Although the
theory is independent of the dimension, in this pa-
per, n = 2 or n = 3. Hence, a point x = (x; y)t or
x = (x; y; z)t refers to a point in two-space and three-
space, respectively.

2.1 Motivation

Let D = fx1; : : : ;xqg be a set of scattered data points in
n-space. The mean value � = 1

q

Pq

i=1
xi and covariance

matrix � = 1

q

Pq

i=1
(xi � �)(xi � �)t; provide informa-

tion about the position, orientation, and spread of D:
Particularly, the polynomial

(x� �)t��1(x� �) + 1 (1)

summarizes all this information. Now, by a sublevel set,
we will mean the set of points where this polynomial is
less than or equal to a constant. These sublevel sets are
a family of nested hyperellipsoidal regions centered at
� and with principal axes in the direction of the eigen-
vectors of �. In almost all the cases, the sublevel sets do
not provide a good description of the shape of the orig-
inal data set D; because the polynomial (1) is a function

of only low-order moments of D: We will extend (1) by
including higher order moments of the data, thereby
capturing the information required to better approxi-
mate the data set. We will call these polynomials shape
polynomials.

2.2 Shape as a probability measure

In Mechanics one usually deals with point masses, and
with curve, surface, and volume mass densities. In Electro-
statics, the objects of study are point charges and curve,
surface, and volume charge densities. A unified founda-
tion for both cases is provided by Measure and Proba-
bility Theory.

Before introducing our definition of shape, let us re-
call some definitions. A probability measure P is con-
centrated in a set S, or, alternatively, the set S supports
P if P (S) = 1: The support of P is the smallest closed
set which supports P . The probability measure P has
compact support if its support is bounded. And finally,
if the support of P does not contain any open set in
the usual Euclidean norm topology, then P is a singular
probability measure.

Although our typical data sets can be represented by
singular probability measures because the data lies on
points, curves and surfaces, we define a shape as a prob-
ability measure with compact support. With this defi-
nition, a single point is a shape, the well-known Dirac
Æ. A finite set of q points, as the data set D from above,
can be represented in a similar fashion, as a sum of Æ’s
with uniform weight 1=q.

In Mechanics and Electrostatics, we can measure
how much mass or charge lies in a certain region of
space by computing the curvilinear or surface integral
of the mass or charge density, along the part of the
curve or surface present inside the given region. In our
case, the amount of shape present in a specific region of
space is just the fraction of length or area of the curve or
surface included in the given region. The shape of a set
of curve segments or surface patches is the weighted
linear combination of the corresponding parts.

3 Properties of shapes

A property of a single point shape is just the value that
a certain function attains at the given point. For a finite
set of points, a property is the average value of the same
function over all the points in the set. In general, we
define a property of a shape as the expected value of a
certain function.

For example, for a finite set of points D =

fx1; : : : ; xqg; the mean ofD is the expectation of the vec-
tor function x, i.e., � = 1

q

Pq

i=1
xi: The covariance of D

is the expectation of the matrix function (x��)(x��)t;
i.e., � = 1

q

Pq

i=1
(xi � �)(xi � �)t:
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3.1 General properties

For any measurable function �(x), the property it
defines for a single point shape x0 is Ex0 [�] =R
�(x)dPx0 = �(x0): For a finite set of data pointsD, the

expressions of the previous paragraph can be general-
ized to the function �. And, for example, the property
defined by the function � for a curve segment L yields

EL[�] =

Z
�(x) dPL =

1

jLj

Z
L

�(x) dl(x);

where jLj is the length of the curve segment L; jLj =R
L

dl(x): Similarly, for a surface patch A, properties are
surface integrals. This can be extended to a set of curve
segments or surface patches. Hence, it is possible to
represent both local and global properties of shape.

3.2 Transformations of shapes and equiva-
lence

In general, a surface or object can be sensed from any
position. The points on a surface that are sensed from
two sensing positions are related by an affine trans-
formation. We wish to study how our shapes and
their properties change with respect to these transfor-
mations.

Given a shape S and some affine transformation
T(x) = Ax + b; a new shape TS is induced by the
transformation. That is, TS is the probability measure
defined by the equation

TS(B) = S(T�1[B]);

whereB is a measurable set. Equivalently, since a prob-
ability measure is uniquely defined by the expectations
of all possible measurable functions on the space,TS is
also defined by the following equation

ETS [�] = ES [� ÆT];

where � is a measurable function. Then, two shapes S
and Q are equivalent if there exists some affine trans-
formation T such that Q = TS: Since the family of
affine transformations is a group, this is a true relation
of equivalence on the shapes.

4 Shape polynomials

In this section, a systematic generalization of the poly-
nomial (1) is introduced, which will enable us to com-
pare shapes.

4.1 Higher order shape polynomials

Let S be a shape. We rewrite (1) in the following way

(x� �)t��1(x� �) + 1 = X
t

�
1 �t

� �+ ��t

�
�1

X

(2)

DATA d = 2 d = 4

Figure 1: Ellipse

whereXt = (1;xt): Also note that the matrix
�

1 �t

� �+ ��t

�
= ES

��
1 x

t

x xx
t

��
= ES [XX

t]:

The polynomial of (2) can be generalized to higher
order. Given a positive integer d, let X be the vector
of all the monomials of degree � d: For example, with
d = 2 and n = 3; we have

X = (1; x; y; z; x2; xy; xz; y2; yz; z2)t:

In general, X is a column vector of m =
�
n+d

n

�
elements.

Now, letMS be the nonnegative and symmetric matrix
MS = ES [XX

t]. Unless S is perfectly represented by a
polynomial in x of degree d; this matrix is nonsingular.
Hence, with certain minor restrictions we can assume
that this is the case for the classes of shapes involved
[20].

The shape polynomial of order d associated with the
shape S is

�S;d(x) =
1

m
X

t[MS]
�1
X;

wherem is the dimension of the vectorX:We will write
�S(x) when the order d is clearly understood. Note
that �

D;1(x) is the polynomial (2). Since the matrixMS

is positive definite, so is [MS ]
�1, and �S is a positive

polynomial of degree 2d , in fact �S(x) � 1=m for all x.
To motivate the term shape polynomials, we show

some examples. These are the graphs of shape poly-
nomials represented as gray-level images, for different
values of d. Darker regions correspond to low values
and brighter regions to higher values. These are 2D
examples, because they are easier to visualize, but the
same conclusions hold in the 3D case. Figure 1 shows
a set of noisy points located around an ellipse. Figure 2
shows a more complex shape, the boundary of an artifi-
cially generated wrench. Figure 3 shows another com-
plex shape but produced by thresholding a real image.
Note that as the degree, d; of the shape polynomial in-
creases, �S;d(x) approximates the original data set bet-
ter. However, even for d = 2; the polynomial captures
the essence of the data set well.

4.2 Properties of the shape polynomials

We state some properties of the shape polynomials. A
detailed analysis, along with the proofs, will be found
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DATA d = 6 d = 12

Figure 2: Wrench

DATA d = 4 d = 8

Figure 3: Plier

in [20]. The most important property is the invariance.
For any shape S and affine transformation T, the ex-
pression

�TS(x) = �S(T
�1(x));

is a polynomial identity. Hence, the value of the shape
polynomial at a points x depends only on the relative
position of the point with respect to the original shape.

Let S be a shape and �S its corresponding shape
polynomial. Then there exists a positive number � such
that for every x, �S(x) � �kxk2d:Hence, �S(x) grows to
1 as kxk grows to 1. An implication is that at least all
of the sublevel sets are bounded. This is a very weak way
to say that they approximate in some sense the shape of
the original data set.

In the same way as we have done here, we can de-
fine trigonometric shape polynomials, replacing the vec-
tor of monomials X by a vector of complex exponen-
tials. For a large family of shapes we can prove that
the sequence of trigonometric shape polynomials con-
verges to the original shape [20]. The present case of
regular shape polynomials is very closely related to the
trigonometric case.

5 Comparing shapes

In this section, we will use the shape polynomials
�S(x) to define distance measures between shapes.

5.1 The �-distance between shapes

Let S and Q be two arbitrary shapes, we define the �-
distance from S to Q as

�S(Q) = jEQ[�S ]� 1j =

����
Z

�S(x) dPQ � 1

���� :
This distance measure is not a real distance in the sense
of metric spaces. For example, we have �S(Q) 6=

�Q(S): The asymmetry is, in fact, required since we
want to measure the distance between an object S and
a subobject Q. A symmetric version is useful for other
applications

�(S;Q) =
EQ[�S ] +ES [�Q]

2
� 1:

5.2 Properties of the �-distances

This section is a consequence of the properties of the
shape polynomials. The �-distance from a shape S to
itself is zero, i.e.,

�S(S) = 0:

The �-distance, �S(Q) is invariant with respect to si-
multaneous affine transformations of shapes S and Q.
If T(x) = Ax+ b is an affine transformation, then

�TS(TQ) = �S(Q):

Finally, if we move shape Q to 1 keeping S fixed, the
�-distance also goes to 1.

Similar statements hold for the symmetric version,
along with the property

�(S;Q) � 0:

5.3 Computation of the �-distance

We give a fast algorithm for the evaluation of EQ[�S ],
which is the essential part of both distance measures.
We are interested in the two cases, the distance between
the shapes S and Q, �S(Q); and the distance between
S and TQ,

�S(TQ) = �T�1S(Q):

The latter matches two shapes by transforming one
with an affine transformation T: It can be shown [20]
that

EQ[�S ] =

Z
�S(x) dPQ

=
1

m
trace fMQM

�1

S
g =

1

m
kL�1

S
LQk

2

2
;

where kAk2
2

is the sum of the squares of the entries of
the matrixA; and LS and LQ are the Cholesky decom-
positions of MS and MQ; respectively,with LS a lower
triangular matrix with positive diagonal elements, and
similarly for MQ and LQ: The right-hand side of the
above expression is the sum of the squares of the entries
of the matrix. The use of the Cholesky decomposition
improves the numerical accuracy of the computation.

Given an affine transformation T, there exists a
unique matrix T?, which is a function of T only, such
that X(T(x)) � T?

X is a polynomial identity. The en-
tries of the matrixT? are polynomials in the parameters
of T for which analytic expressions are known [18]. To
compute �S(TQ), we have

ETQ[�S ] = kL�1S T
?
LQk

2

2
:
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6 Applications

We start this section using the symmetric �-distance
to estimate the position and orientation of one known
and unoccluded object. Then we extend the procedure
to the classification of one unoccluded object among a
finite set of known models. Finally, we describe how
to use both distance measures for recognizing objects
in a cluttered environment. For the first two problems,
the model of an object is a matrix of moments. For the
latter, the object model is a collection of such matrices,
corresponding to significant parts of the object.

6.1 One unoccluded object and one model

Let the data be represented by the shape S, the model
by the shape Q, and let T be the linear transformation
that matches the model with the data. For a fixed order
d; the best match is produced by the minimizer T̂ of the
expression �(S;TQ): This is a multimodal polynomial
function of the parameters T: To compute T̂ we need
a good initial approximation. We begin by using sec-
ond degree polynomials, d = 1; for the approximation.
Then the matrix MS is just the usual scatter matrix of
the data in the plane or 3-space. For d = 1 and T a rigid
body transformation, determination of the estimate T̂
has an analytic solution – two solutions in 2-space and
four in 3-space, in most of the cases. One can first ro-
tate the model until the eigenvectors of its scatter ma-
trix align with the corresponding ones of the data, thus
estimating the orientation of the object being measured,
and then translate the model until its mean coincides
with the mean of the data, thus estimating the location
of the object. Since there is more than one rotation pos-
sible, the ambiguity is then resolved by computing the
symmetric distance for a higher degree approximation,
i.e., some d > 1. Then, this initial transformation can be
improved by a gradient descent technique. However,
the initial transformation is a very good approximation
to the global minimum.

6.2 One unoccluded object and several
models

Here, we have to determine which model, Q1; : : : ; Qr,
is the one which best matches the observed data, S. For
each model Qi; we compute an initial transformation
Ti; as described in the previous section. Then we clas-
sify S as belonging to the class of Qj ; if

�(S;TjQj) = min f�(S;TiQi) : 1 � i � rg:

Only for the model that minimizes this expression, the
�-distance for some d > 1 is iteratively minimized. Al-
though the computation of the �-distances is not very
expensive, the number of evaluations can be reduced.
If the �-distance for d = 1 from the data to an object is

large, there is no good match. For d = 1 the �-distance
between two shapes is an analytic expression, a sum
of quotients of corresponding eigenvalues [20]. Low
value of order one �-distance corresponds to almost
equal eigenvalues of the data and model scatter matri-
ces. Therefore, the first step of the classification can be
implemented with a hash table [15] using a properly
quantized function of the 2D or 3D eigenvalue space.
That is, the set of eigenvalues is used as the hash index
and allows for quickly pruning the search space.

6.3 Modeling in terms of important parts

Our goal is to use the above procedures to develop
techniques for recognizing objects in such hostile envi-
ronments as, for example, a bin of parts or in a cluttered
environment. Recognition is based on matching small
regions of observed data with parts of known models.
The small regions will be assumed to constitute unoc-
cluded observations of the corresponding parts of the
models. If an object is modeled as a collection of geo-
metrically related subobjects, the problem is reduced to
finding the best collection of pairings between model
subobjects and regions of observed data that satisfies
the same set of global constraints.

We need a procedure to chose important parts of a
model or data set. This procedure is described be-
low. To speed up the recognition steps, the models
are preprocessed. For each model, a standard position
is computed, using the mean vector and eigenvectors
of its scatter matrix. Every important part of a model
is transformed to its own standard position relative to
the model coordinate system. This transformation is
stored, along with the Cholesky decomposition of the
matrix of moments and the inverse of this matrix. This
significantly reduces the number of operations in the
recognition phase. All of the important parts are orga-
nized in the hash table described in the previous sub-
section. That is, the information about all the important
parts of all the models is stored in a hash table indexed
by eigenvalues.

The important parts were chosen as the data within
a circular (rotation invariant) window of fixed radius.
The center of each window was chosen at random and
then adjusted, iteratively, until it was close to the mean
of the data inside the window. This procedure tends
to find windows containing high-curvature points and,
more generally, regions with much structure, i.e., many
data points. Other criteria for locating special interest
regions are under study. Figure 4 shows all the win-
dows computed for the data set and the two models
used in the experiments.

Both the observation and model data of Figure 4
were acquired from images of tools taken against a
white background. These images were thresholded to
extract object boundaries. These boundaries, including
deformations because of specular reflections and shad-
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MODEL 1 MODEL 2 DATA

Figure 4: Important Parts

ows were used as data.

6.4 Occluded objects and several models

In the recognition phase, the important parts of the data
are extracted following the same procedure as for the
models (Figure 4). A standard position is computed for
each part, relative to a global coordinate system asso-
ciated with the data. Hence, windows of data are cho-
sen by a criterion that should result in windows corre-
sponding to those chosen in the model. The data in a
window is translated and rotated to put the mean and
scatter matrix eigenvalues in standard position. Initial
local matches are made of the eigenvalues for a win-
dow with those for model subparts; the eigenvalues of
the data within the windows are used as an index in the
hash table that contains the models.

The next stage in the recognition process is the com-
binatorial correspondence problem. Suppose that at a
certain point in the recognition process, several impor-
tant parts of the data are assigned to certain parts of
the same model, and these assignments are spatially
consistent. The union of these data points constitutes
a subobject of the corresponding model and the asym-
metric �-distance is used to measure how well this
data fits as a subset of the model. Simultaneously, other
groups of important data parts will be assigned to other
models or the same model, in a different position. The
sum of these asymmetric �-distances, from groups of
consistent data assignments to models, is a global con-
sistency measure to be minimized.

One of the possibilities is a sequential algorithm
based on the classification procedure described above.
The best match is computed for every important part
of the data; then consistent pairs are grouped together
following a verification procedure. Another possibil-
ity is to use some kind of stochastic minimization tech-
nique, for example, simulated annealing for optimizing
the global performance function. Yet another possibil-
ity is explored in the following. This possibility can be
seen as a way to compute an initial configuration for
stochastic relaxation.

Global hypotheses are generated by a weighted vot-
ing scheme based on purely local matching. Every pos-
sible pair of data and model regions, determined by
entries in the hash table, generated an hypothesis for
a model along with a transformation. The votes for

Figure 5: Hypothesis generated for model 1

Figure 6: Hypothesis generated for model 2

model and transformation pairs were accumulated in
a parameter space corresponding to the group of trans-
formations. The weight of each vote was computed as
1=(1 + K�); with � the symmetric distance between
model and data part and K a positive constant. Finally,
peaks were extracted as global hypotheses about ob-
jects at certain locations.

This experiment was designed to understand and
show the usefulness of the �-distance. Figures 5 and
6 show the hypotheses generated for the models and
data set shown in figure 4. These hypotheses were
generated by matching procedures based on the eigen-
vectors and eigenvalues of the local scatter matrices.
That is, the initial transformations estimated from the
distance measure of order d = 1 were used. The hy-
potheses have to be verified, using the global consis-
tency measure defined by the asymmetric �-distance.
The location estimates of objects can be improved by a
gradient descent technique applied to the global asym-
metric �-distance. These techniques have been applied
in closely related problems [18].

7 Discussion

By defining shape as a probability measure with com-
pact support, object representations (curves, surfaces)
and observations of such objects (scattered data points)
are treated in a unified fashion. The concept of shape
polynomials captures the properties of these funda-
mentally different shape types at multiple resolutions.
Using the shape polynomials, two meaningful and
computationally efficient measures of shape similarity
are defined, a symmetric and an asymmetric version. It
is shown that these tools can be used to recognize, clas-
sify, and estimate the positions of unoccluded objects,
which is a part of the general problem of recognizing
occluded objects in a complicated scene. Finally, it is
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demonstrated that the asymmetric version of the dis-
tance measure can be used to implement a global con-
sistency measure for the correspondence problem.

Some of the concepts introduced in this paper are
generalizations of well-established concepts. The �-
distances provide meaningful measures to fit data
points or surface specifications of one object to that of
other objects. Special cases of this are well-known, for
example, methods to match points to planar patches.
Though representing models and data by one or more
polynomial surface patches [18] is an attractive ap-
proach there are two difficulties that are eliminated
with the approach in this paper. The first is that the
zeros of a polynomial generally extend out to infin-
ity. Hence, data points far from and not associated
with an object can still be very close to its polynomial
(e.g., a plane extends to infinity). The other problem
is that polynomial surface fitting requires on-line ma-
trix eigenvalue finding. Shape polynomials in this pa-
per take low values only in the vicinity of the model,
and the computation to compute the distance measure
is less than for the polynomial surface fitting.

The representation of one object as a collection of
subobjects has been used before, however, the subob-
jects have been simpler, such as quadric patches. For
2D edge images, our representation allows us to use
the information provided, not only by the silhouette,
but by the internal boundary structure too. This rep-
resentation is a generalization of the concept of interest
points, such as intersections of lines and high curvature
points. Our interest points are subregions with a rela-
tively complex structure, i.e., regions that can only be
represented with higher d.

Finally, we are in the process of implementing a gen-
eral vision system. The results are very promising, and
we believe that the methods for shape representation
and comparison are extremely consequential.
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